scholarly journals A Miniaturized Broadband and High Gain Planar Vivaldi Antenna for Future Wireless Communication Applications

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Permanand Soothar ◽  
Hao Wang ◽  
Chunyan Xu ◽  
Yu Quan ◽  
Zaheer Ahmed Dayo ◽  
...  

This paper presents a new miniaturized planar Vivaldi antenna (PVA) design. The proposed antenna structure consists of an aperture tapered profile and cavity stub fed with a simple 50 Ω strip line feeding network. The designed PVA offers versatile advantages, including the miniaturized size and simple design, and exhibited an outstanding performance compared to the latest reported literature. The antenna occupies a minimal space with an electrical size of 0.92λ0 × 0.64λ0 × 0.03λ0. The antenna achieves an excellent relative impedance bandwidth 117.25% at 10 dB return loss, peak realized gain of 10.9 dBi, and an excellent radiation efficiency of 95% at the specific resonances. The antenna’s optimal features, that is, broadband, high gain, and radiation efficiency, are achieved with efficient grooves based approach. Besides, the proposed antenna results are also analyzed in the time domain, which shows the excellent group delay performance <2 ns in the operational band. The proposed antenna exhibited a stable far-field radiation pattern in orthogonal planes and strong distribution of current at multiple resonances. Simulation and the measured result show a good agreement. The proposed antenna has achieved optimal performance and is suitable for future wireless communication applications.

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Wonsuk Ko

Abstract Sub-terahertz (THz) technology is expected to deliver exceptional data rates for future sixth generation wireless communication systems especially for intelligent communication among devices falling under the Internet of Things (IoT) category. Moving from current 5G millimeter wave (mmW) technology towards THz spectrum will eventually provide unprecedented solutions that will guarantee higher transmission rates and channel capacity for any wireless communication system. With various electronic and wireless components working together to fulfill this promise, high gain antennas having compact profile is one such technology that will aid in achieving sub-THz communication while offering low path and power losses with reliable and fast data transfers. In this context, this work proposes a novel deformed patch antenna operating in the sub-THz spectrum i.e. at 300 GHz band. The proposed antenna is fed via a microstrip line following the proximity coupled feeding technique. Utilizing this technique provides a wide impedance bandwidth with a broadside radiation pattern having minimum side lobe levels of around −12 dB and a directivity of 10–15 dBi for the single and array elements respectively. The proposed design has a small footprint of 1.5 × 1.5 × 0.06 mm3 for the single element while the array element has dimensions of 6 × 5 × 0.06 mm3. Both the designs have been simulated in Computer Simulation Technology-Microwave Studio (CST-MWS) and the results verified via high-frequency structure simulator (HFSS) simulator. The results confirm the viability of the proposed designs to be potential candidates for future sixth generation and IoT based applications.


2016 ◽  
Vol 78 (5-9) ◽  
Author(s):  
Muhammad Fauzan Edy Purnomo ◽  
Hadi Suyono ◽  
Panca Mudjirahardjo ◽  
Rini Nur Hasanah

The circularly polarized (CP) microstrip antennas, both of singly- and doubly-fed types, possess inherent limitation in gain, impedance and axial-ratio bandwidths. These limitations are caused mainly by the natural resonance of the patch antenna which has a high unloaded Q-factor and the frequency-dependent excitation of two degenerative modes (TM01 and TM10) when using a single feed. Many applications which require circular polarization, large bandwidth, and good performance, especially in the field of wireless communication, are still difficult to be designed by using antenna software. Some consideration to take will include the application target and design specification, the materials to be used, and the method to choose (formula, numerical analysis, etc). This paper explains and analyzes the singly-fed microstrip antenna with circular polarization and large bandwidth. This singly-fed type of microstrip antenna provides certain advantage of requiring no external circular polarizer, e.g. the 900 hybrid, as it only needs to apply some perturbation or modification to a patch radiator with a standard geometry. The design of CP and large-bandwidth microstrip antenna is done gradually, by firstly truncating one tip, then truncating the whole three tips, and finally modifying it into a pentagonal patch structure and adding an air-gap to obtain larger bandwidths of impedance, gain and axial ratio. The last one antenna structure results in a novelty because it is a rare design of antenna which includes all types of bandwidth (impedance, gain, and axial ratio) being simultaneously larger than the origin antenna. The resulted characteristic performance of the 1-tip (one-tip) antenna shows respectively 1.9% of impedance bandwidth, 3.1% of gain bandwidth, and 0.45% of axial-ratio bandwidth. For the 3-tip (three-tip) step, the resulted bandwidths of respectively impedance, gain, and axial ratio are 1.7%, 3.3% and 0.5%. The pentagonal structure resulted in the bandwith values of 15.67%, 52.16% and 4.11% respectively for impedance, gain, and axial ratio. 


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Majeed A. Alkanhal

In order to achieve wide bandwidth and high gain, we propose a stacked antenna structure having a microstrip aperture coupled feeding technique with a mounted Horn integrated on it. With optimized parameters, the single antenna element at a center frequency of 60 GHz, exhibits a wide impedance bandwidth of about 10.58% (58.9–65.25 GHz) with a gain and efficiency of 11.78 dB and 88%, respectively. For improving the gain, we designed a 2 × 2 and 4 × 4 arrays with a corporate feed network. The side lobe levels were minimized and the back radiations were reduced by making use of a reflector atλ/4distance from the corporate feed network. The2×2array structure resulted in improved gain of 15.3 dB with efficiency of 83%, while the4×4array structure provided further gain improvement of 18.07 dB with 68.3% efficiency. The proposed design is modelled in CST Microwave Studio. The results are verified using HFSS, which are found to be in good agreement.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Marko Sonkki ◽  
Sami Myllymäki ◽  
Jussi Putaala ◽  
Eero Heikkinen ◽  
Tomi Haapala ◽  
...  

The paper presents a novel dual polarized dual fed Vivaldi antenna structure for 1.7–2.7 GHz cellular bands. The radiating element is designed for a base station antenna array with high antenna performance criteria. One radiating element contains two parallel dual fed Vivaldi antennas for one polarization with 65 mm separation. Both Vivaldi antennas for one polarization are excited symmetrically. This means that the amplitudes for both antennas are equal, and the phase difference is zero. The orthogonal polarization is implemented in the same way. The dual polarized dual fed Vivaldi is positioned 15 mm ahead from the reflector to improve directivity. The antenna is designed for -14 dB impedance bandwidth (1.7–2.7 GHz) with better than 25 dB isolation between the antenna ports. The measured total efficiency is better than -0.625 dB (87%) and the antenna presents a flat, approximately 8.5 dB, gain in the direction of boresight over the operating bandwidth whose characteristics promote it among the best antennas in the field. Additionally, the measured cross polarization discrimination (XPD) is between 15 and 30 dB and the 3 dB beamwidth varies between 68° and 75° depending on the studied frequency.


The proposed vivaldi antenna for wearable applications is done using flexible material. The designed antenna has the length of 8 cm and width is 6 cm. For the gain enhancement, strip lines are added in the vivaldi. There are six strip lines and the length of the strip is varied. By adding the strip line, gain of the antenna is increased compared to without strip lines. It has high gain and directivity. Poly-Ethylene Terephthalate (PET) is used as a substrate for achieving the flexibility and it has high resist to moisture. It has board range of use temperature, -60 to 130°C. For every iteration, a strip line is added one by one upto six lines. The gain and directivity of the antenna is 5.4 dB for both the parameters.


Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1080 ◽  
Author(s):  
Azita Goudarzi ◽  
Mohammad Mahdi Honari ◽  
Rashid Mirzavand

Resonant cavity antennas (RCAs) are suitable candidates to achieve high-directivity with a low-cost and easy fabrication process. The stable functionality of the RCAs over different frequency bands, as well as, their pattern reconfigurability make them an attractive antenna structure for the next generation wireless communication systems, i.e., fifth generation (5G). The variety of designs and analytical techniques regarding the main radiator and partially reflective surface (PRS) configurations allow dramatic progress and advances in the area of RCAs. Adding different functionalities in a single structure by using additional layers is another appealing feature of the RCA structures, which has opened the various fields of studies toward 5G applications. This paper reviews the recent advances on the RCAs along with the analytical methods, and various capabilities that make them suitable to be used in 5G communication systems. To discuss different capabilities of RCA structures, some applicable fields of studies are followed in different sections of this paper. To indicate different techniques in achieving various capabilities, some recent state-of-the-art designs are demonstrated and investigated. Since wideband high-gain antennas with different functionalities are highly required for the next generation of wireless communication, the main focus of this paper is to discuss primarily the antenna gain and bandwidth. Finally, a brief conclusion is drawn to have a quick overview of the content of this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Ahmad Fauzi Bin Abas ◽  
Wonsuk Ko ◽  
Majeed A. Alkanhal ◽  
...  

Terahertz (THz) links will play a major role in high data rate communication over a distance of few meters. In order to achieve this task, antenna designs with high gain and wideband characteristics will spearhead these links. In this contribution, we present different antenna designs that offer characteristics better suited to THz communication over short distances. Firstly, a single-element antenna having a dipole and reflector is designed to operate at 300 GHz, which is considered as a sub-terahertz band. That antenna achieves a wide impedance bandwidth of 38.6% from 294 GHz to 410 GHz with a gain of 5.14 dBi. Secondly, two designs based on the same dipole structure but with added directors are introduced to increase the gain while maintaining almost the same bandwidth. The gains achieved are 8.01 dBi and 9.6 dBi, respectively. Finally, an array of 1×4 elements is used to achieve the highest possible gain of 13.6 dBi with good efficiency about 89% and with limited director elements for a planar compact structure to state-of-the-art literature. All the results achieved make the proposed designs viable candidates for high-speed and short-distance wireless communication systems.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Mohammad Mahdi Honari ◽  
Mohammad Saeid Ghaffarian ◽  
Rashid Mirzavand

In this paper, a miniaturized ultra-wideband antipodal tapered slot antenna with exponential strip arms is presented. Two exponential arms with designed equations are optimized to reduce the lower edge cut-off frequency of the impedance bandwidth from 1480 MHz to 720 MHz, resulting in antenna miniaturization by 51%. This approach also improves antenna bandwidth without compromising the radiation characteristics. The dimension of the proposed antenna structure including the feeding line and transition is 158 × 125 × 1 mm3. The results show that a peak gain more than 1 dBi is achieved all over the impedance bandwidth (0.72–17 GHz), which is an improvement to what have been reported for antipodal tapered slot and Vivaldi antennas with similar size.


Frequenz ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Gnanasivam Pachaiyappan ◽  
Parthasarathy Ramanujam

AbstractIn this article, a simple design of stacked radiating system with enhanced gain, impedance bandwidth, and radiation efficiency for mobile base station application is presented. The proposed antenna consists of a driven patch with a semicircular parasitic patch printed on the bottom layer and five parasitic patches printed on the top layer. The driven patch is feed by a co-axial probe and both the layers are separated in air. The second layer has four truncated circular parasitic patches on one side and one circular patch on the other side to enhance the directive gain acts as a directive reflector. This staked system encompasses some prominent features such as wide bandwidth, good gain, low profile, better radiation efficiency simple design, and integration for the mobile base station. Meanwhile, this configuration exhibits a bandwidth of 2 GHz with the minimized volume is 0.75 λ0 × 0.75 λ0 × 0.08 λ0. Experimentally validated results have an average and peak gain of 10.7 and 12.7 dBi, impedance bandwidth of more than 30.7% for |S11| < −10 dB, and radiation efficiency of above 86%. The proposed stacked radiating system finds its applications in Wi-Fi, WLAN, Wi-Max, Indoor UWB, and Marine Radar applications.


Sign in / Sign up

Export Citation Format

Share Document