scholarly journals Research and Performance Test of New Full-Length Anchorage Material

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shunjie Huang ◽  
Xiangrui Meng ◽  
Guangming Zhao ◽  
Yingming Li ◽  
Xiang Cheng ◽  
...  

It is difficult to support roadway with anchor cable in view of impact tendency in impinging liability roadway; a new material of inorganic and high-performance full-length anchoring material for anchoring cable is developed by adding several modifiers with ultrafine cement as the main material. The purpose is to improve the mechanical properties and durability of cement-based materials, improve the coordination of anchor cable support system, and ensure the stability of surrounding rock of mining roadway. The new full-length anchoring material is developed by optimizing the proportion of different components of the material, and the mechanical properties of the new material were studied. The anchoring force of resin anchoring agent, ordinary Portland cement, blank ultrafine cement, and new full-length anchoring material are tested. Based on SEM microscopic characterization, the fracture types and failure characteristics of resin anchoring agent and full-length anchoring material are researched. The results show that the optimal content of each component of the new inorganic high-performance full-length anchorage material is as follows: the content of component A is 15%, the content of component B is 3%, the content of component C is 0.2%, the content of component D is 1%, and the content of component E is 1%; the tensile test shows that the full-length anchoring material has good bonding property, high anchoring strength, strong stability, and good rock coupling. SEM microstructure and morphology analysis have showed that the new anchorage materials can fully hydrate each other, resulting in a relatively dense stone body. The new full-length anchoring material can effectively improve the anchoring force and improve the stability of the anchor cable and has significant performance advantages and good engineering applicability, and it has the advantages of lower cost and safer to use. The new material is a very good supporting material for roadway.

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 567
Author(s):  
Hong Yang ◽  
Mingyu Gao ◽  
Jinxin Wang ◽  
Hongbo Mu ◽  
Dawei Qi

In the absence of high-quality hardwood timber resources, we have gradually turned our attention from natural forests to planted fast-growing forests. However, fast-growing tree timber in general has defects such as low wood density, loose texture, and poor mechanical properties. Therefore, improving the performance of wood through efficient and rapid technological processes and increasing the utilization of inferior wood is a good way to extend the use of wood. Densification of wood increases the strength of low-density wood and extends the range of applications for wood and wood-derived products. In this paper, the effects of ultrasonic and vacuum pretreatment on the properties of high-performance wood were explored by combining sonication, vacuum impregnation, chemical softening, and thermomechanical treatments to densify the wood; then, the changes in the chemical composition, microstructure, and mechanical properties of poplar wood before and after treatment were analyzed comparatively by FT-IR, XRD, SEM, and mechanical tests. The results showed that with ultrasonic pretreatment and vacuum impregnation, the compression ratio of high-performance wood reached its highest level and the MOR and MOE reached their maximums. With the help of this method, fast-growing softwoods can be easily prepared into dense wood materials, and it is hoped that this new material can be applied in the fields of construction, aviation, and automobile manufacturing.


2020 ◽  
Author(s):  
Adrian Batugin ◽  
Zhiqiang Wang ◽  
Wenyu Lv ◽  
Zehua Su ◽  
Shermatova Sayyora Sidikovna

Abstract Utilizing the spatial structure characteristic of the external staggered split-level panel layout, the combined support technology of adjacent roadways was proposed, and combined support mechanism of rock bolt and anchor cable was analyzed. The influence of side rock bolt and anchor cable parameters respectively on mechanical properties of the anchorage body and support stress distribution of lateral coal body were revealed through FLAC 3D software. The optimal support parameters of side rock bolt and anchor cable were determined subsequently. And the support effect of the gob-side entry under mining influence was verified. Result shows that the support of side rock bolt and anchor cable can improve mechanical properties and the stress state of the anchorage body, which has a good protective effect on the coal body of the air-intake entry roof and side wall. It is beneficial to the stability of the side wall and the realization of the suspension effect for the roof rock bolt and anchor cable, which makes the surrounding rock maintenance of the gob-side entry of the thick coal seam more favorable.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Xiao Ma ◽  
Qiuhua Rao

High-performance lightweight aggregate concrete with inorganic polymers cement based on multiple minerals is a very promising new material. The research of mechanical properties of the new material is of great theoretical and practical significance. In this research, the failure behavior, cubic and prism compressive strength, elastic modulus, peak strain of the new material, and the nature of the stress-strain curve are studied. An analytical model is quoted to represent the ascending and descending parts of the stress-strain curve.


2020 ◽  
Author(s):  
Adrian Batugin ◽  
Wang Zhiqiang ◽  
Su Zehua ◽  
Shermatova Sayyora Sidikovna

Abstract Utilizing the spatial structure characteristics of the external staggered split-level panel layout, the combined support technology of adjacent roadways is proposed, and combined support mechanism of rock bolt and anchor cable were analyzed. The influence of the side rock bolt and anchor cable parameters respectively on the mechanical properties of the anchorage body and support stress distribution of lateral coal body was revealed through FLAC3D software. The optimal support parameters of side rock bolt and anchor cable were determined subsequently. And the support effect of the gob-side entry under mining influence was verified. Result shows that the support effect of side rock bolt and anchor cable can improve the mechanical properties and the stress state of the anchorage body, which has a good protective effect on the coal body of the air-intake entry roof and side wall. It is beneficial to the stability of the side wall and the realization of the suspension effect for the roof rock bolt and anchor cable, which makes the surrounding rock maintenance of the gob-side entry of the thick coal seam more favorable.


This paper presents the impact of the basalt fibre in concrete.Basalt fibre is a relatively new material and it is a high performance non-metallic fibre made from basalt rock melted at a high temperature. It is economical and having good strength characteristics, and also resists against temperature and alkaline environment. The Main aim of this paper is to find the compressive, flexural and split tensile strength of Concrete with M-sand and Basalt Fibre. The length of basalt fibre 12mm was used with in the range of 0.1% to 0.3%with total volume of concrete. Due to lack of river sand, it is partially replaced with M-sand by 50%and 60% in this work. This paper shows the enhancement of mechanical properties of concrete by adding Basalt fibre and partial replacement of river sand with M-sand.


Author(s):  
Adrian Batugin ◽  
Zhiqiang Wang ◽  
Zehua Su ◽  
Shermatova Sayyora Sidikovna

AbstractUsing the spatial structure of the external staggered split-level panel layout, a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism. The influence of the side rock bolt and anchor cable parameters on the mechanical properties of the anchorage body and the support stress distribution of the lateral coal body were revealed using the FLAC3D software. The optimal support parameters of the side rock bolts and anchor cables were subsequently determined, and the support effect of gob-side entry in a mining scenario was verified. The results show that the support of the side rock bolts and anchor cables improves the mechanical properties and stress state of the anchorage body, producing a good protective effect on the coal body of the air-intake entry roof and side wall. This is beneficial to the stability of the side wall and the realization of the suspension effect for roof rock bolts and anchor cables, which in turn makes the surrounding rock maintenance of the gob-side entry to a thick coal seam more favorable.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


1997 ◽  
Vol 77 (03) ◽  
pp. 504-509 ◽  
Author(s):  
Sarah L Booth ◽  
Jacqueline M Charnley ◽  
James A Sadowski ◽  
Edward Saltzman ◽  
Edwin G Bovill ◽  
...  

SummaryCase reports cited in Medline or Biological Abstracts (1966-1996) were reviewed to evaluate the impact of vitamin K1 dietary intake on the stability of anticoagulant control in patients using coumarin derivatives. Reported nutrient-drug interactions cannot always be explained by the vitamin K1 content of the food items. However, metabolic data indicate that a consistent dietary intake of vitamin K is important to attain a daily equilibrium in vitamin K status. We report a diet that provides a stable intake of vitamin K1, equivalent to the current U.S. Recommended Dietary Allowance, using food composition data derived from high-performance liquid chromatography. Inconsistencies in the published literature indicate that prospective clinical studies should be undertaken to clarify the putative dietary vitamin K1-coumarin interaction. The dietary guidelines reported here may be used in such studies.


PCI Journal ◽  
2008 ◽  
Vol 53 (4) ◽  
pp. 108-130
Author(s):  
Mohsen A. Issa ◽  
Atef A. Khalil ◽  
Shahidul Islam ◽  
Paul D. Krauss

2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


Sign in / Sign up

Export Citation Format

Share Document