scholarly journals Nanomedicine Based on Natural Products: Improving Clinical Application Potential

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhe Li ◽  
Tingting Zhao ◽  
Jiaxin Li ◽  
Qingying Yu ◽  
Yu Feng ◽  
...  

Natural products have antitumor, anti-inflammatory, antioxidant, and other pharmacological activities and are an important source of drugs for prevention and treatment of various diseases. However, the inherent defects of natural products in physiological media such as poor solubility and stability and short biological half-life limit their clinical application. In recent years, more and more attention has been paid to the science of drug delivery by nanoscale materials. A large number of in vitro and in vivo studies have further confirmed the efficacy and safety of nanomedicine based on natural products in preclinical models of various diseases. In this review, we summarized the achievements of nanomaterials in improving the efficacy of natural products, introduced the research progress in several key fields of natural product-based nanomedicine in medical application, and discussed the challenges and prospects of clinical transformation of nanomedicine.

2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2019 ◽  
Vol 17 (3) ◽  
pp. 247-267 ◽  
Author(s):  
Muneeb U. Rehman ◽  
Adil Farooq Wali ◽  
Anas Ahmad ◽  
Sheeba Shakeel ◽  
Saiema Rasool ◽  
...  

Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer’s disease, epilepsy, Parkinson’s disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.


2020 ◽  
Vol 15 (3) ◽  
pp. 228-238 ◽  
Author(s):  
Xiangming Xu ◽  
Lei Yao

Background : Receptor Tyrosine Kinases (RTKs) play critical roles in a variety of cellular processes including growth, differentiation and angiogenesis, and in the development and progression of many types of cancer. Mesenchymal-Epithelial Transition Factor (c-Met) kinase is one of the types of RTKs and has become an attractive target for anti-tumor drug designing. c-Met inhibitors have a broad prospect in tumor prevention, chemotherapy, biotherapy, and especially in tumor resistance. Objective: The purpose of this article is to review recent research progress of c-Met inhibitors reported in patents since 2015. Methods: A comprehensive Scifinder and Web of Science literature review was conducted to identify all c-Met inhibitors published in patents since 2015. Results: There are two kinds of c-Met inhibitors, one is from natural products, and the other one is of synthetic origin. Most of these c-Met inhibitors show potent in vivo and in vitro antitumor activities and have potential in the treatment of cancers. Conclusion: c-Met kinase inhibitors have emerged as an exciting new drug class for the treatment of all kinds of cancers, especially the Non-Small Cell Lung Cancer (NSCLC) with tumor resistance. More studies should be conducted on natural products to find novel c-Met kinase inhibitors.


Author(s):  
Md. Habibur Rahman ◽  
Rokeya Akter ◽  
Mohammad Amjad Kamal

: Nature has bestowed humanity through additional resources natural products (NPs) on earth with water. However, NPs have a significant function in the avoidance of disease by boosting health in humans as well as animals. These NPs have been scientifically acknowledged to have a range of biological characteristics like antioxidant, anti-inflammatory actions. Both In vitro and in vivo studies have more recognised the convenience of NPs in different preclinical models of neurodegenerative disorders. Moreover, most NPs comprise phytoconstituents, including polyphenolic antioxidants; originate in herbs, fruits, nuts, vegetables as well as also in marine with freshwater flora. These phytoconstituents might actively repress neuro-degeneration and recover memory as like cognitive actions of the brain. Moreover, they are well recognized to participate in an essential position in the prevention like heal of different neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, epilepsy, and additional neuronal disorders. In general, the large-scale neuro-pharmacological actions of NPs have been familiar owing to the consequence of also the inhibition of inflammatory processes, or the up-regulation of various cell endurance proteins or a mixture of together. Owing to the shortage of human studies on neuroprotective belongings of NPs, this review highlights a variety of documented actions of NPs in vitro and in vivo preclinical models and their possible neuro-protection applications by the accessible awareness in writing.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rui Gong ◽  
Zuke Jiang ◽  
Naufal Zagidullin ◽  
Tianyi Liu ◽  
Benzhi Cai

AbstractWith the high morbidity and mortality rates, cardiovascular diseases have become one of the most concerning diseases worldwide. The heart of adult mammals can hardly regenerate naturally after injury because adult cardiomyocytes have already exited the cell cycle, which subseqently triggers cardiac remodeling and heart failure. Although a series of pharmacological treatments and surgical methods have been utilized to improve heart functions, they cannot replenish the massive loss of beating cardiomyocytes after injury. Here, we summarize the latest research progress in cardiac regeneration and heart repair through altering cardiomyocyte fate plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions. First, residual cardiomyocytes in damaged hearts re-enter the cell cycle to acquire the proliferative capacity by the modifications of cell cycle-related genes or regulation of growth-related signals. Additionally, non-cardiomyocytes such as cardiac fibroblasts, were shown to be reprogrammed into cardiomyocytes and thus favor the repair of damaged hearts. Moreover, pluripotent stem cells have been shown to transform into cardiomyocytes to promote heart healing after myocardial infarction (MI). Furthermore, in vitro and in vivo studies demonstrated that environmental oxygen, energy metabolism, extracellular factors, nerves, non-coding RNAs, etc. play the key regulatory functions in cardiac regeneration. These findings provide the theoretical basis of targeting cellular fate plasticity to induce cardiomyocyte proliferation or formation, and also provide the clues for stimulating heart repair after injury.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 541
Author(s):  
Joëlle Houriet ◽  
Yvonne E. Arnold ◽  
Léonie Pellissier ◽  
Yogeshvar N. Kalia ◽  
Jean-Luc Wolfender

Herbal preparations (HPs) used in folk medicine are complex mixtures of natural products (NPs). Their efficacy in vivo after ingestion depends on the uptake of the active ingredient, and, in some cases, their metabolites, in the gastrointestinal tract. Thus, correlating bioactivities measured in vitro and efficacy in vivo is a challenge. An extract of Pueraria lobata rich in different types of isoflavones was used to evaluate the capacity of viable porcine small intestine ex vivo to elucidate the absorption of HP constituents, and, in some cases, their metabolites. The identification and transport of permeants across the jejunum was monitored by liquid chromatography-mass spectrometry (LC-MS), combining targeted and untargeted metabolite profiling approaches. It was observed that the C-glycoside isoflavones were stable and crossed the intestinal membrane, while various O-glycoside isoflavones were metabolized into their corresponding aglycones, which were then absorbed. These results are consistent with human data, highlighting the potential of using this approach. A thorough investigation of the impact of absorption and biotransformation was obtained without in vivo studies. The combination of qualitative untargeted and quantitative targeted LC-MS methods effectively monitored a large number of NPs and their metabolites, which is essential for research on HPs.


2021 ◽  
Vol 22 (22) ◽  
pp. 12255
Author(s):  
Niti Sharma ◽  
Mario A. Tan ◽  
Seong Soo A. An

Phytosterols constitute a class of natural products that are an important component of diet and have vast applications in foods, cosmetics, and herbal medicines. With many and diverse isolated structures in nature, they exhibit a broad range of biological and pharmacological activities. Among over 200 types of phytosterols, stigmasterol and β-sitosterol were ubiquitous in many plant species, exhibiting important aspects of activities related to neurodegenerative diseases. Hence, this mini-review presented an overview of the reported studies on selected phytosterols related to neurodegenerative diseases. It covered the major phytosterols based on biosynthetic considerations, including other phytosterols with significant in vitro and in vivo biological activities.


2021 ◽  
Vol 71 (3) ◽  
pp. 177-196
Author(s):  
Milka Punoševac ◽  
Jelena Radović ◽  
Aleksandra Leković ◽  
Tatjana Kundaković-Vasović

Parsley is a biennial aromatic plant from the Apiaceae family, which is characterized by an unbranched root, pinnately divided leaves, umbels and schizocarp. It contains essential oil in all parts, with phenylpropane and terpene compounds as main components. It is rich in flavonoids and other polyphenolic compounds, containing furanocoumarins, carotenoids, polyacetylenes, and its leaves are a source of vitamins and minerals. The chemical composition of parsley depends on a number of factors, so it differs not only in different parts and varieties of the plant but also in different samples of the same parts of one variety. The most important parsley compounds are myristicin, apiol, 1-allyl-2,3,4,5-tetramethoxybenzene, b-phellandrene, 1,3,8-p-menthatriene, b-pinene, terpinolene, apiin, oxypeucedanin and falcarinol. Parsley has a long tradition of use in the treatment of urinary tract disorders, and modern in vitro and in vivo studies reveal numerous effects of various parsley preparations such as diuretic, antiurolithiasis, hypouricemic, hypolipidemic, hypoglycemic, hypotensive, antioxidant, anti-inflammatory and antiplatelet effect. Today, apart from its medical application, parsley is one of the most commonly used culinary herbs.


2020 ◽  
Vol 9 (1) ◽  
pp. 902-907

Disease can occur due to alterations in many physiological processes. A variety of factorsare known to be involved in the progression of cancer, a chronic diseasethat occurs due to permissible proliferative signaling, avoiding growth suppressors, resisting cell death, allowing replicative immortality, induction of angiogenesis, and inducing invasion and metastasis, along with reprogramming of metabolic pathways involved in energy production and avoiding the host immune response for cell destruction. Treatment of such a multifactorial disease has very less cure rate because of the singular agents tried in the past for targeting. Molecular level studies with deeper insight are urgently neededthat focus on the most promising herbal-derived bioactive substances for which thorough research was carried out in the literature in various data-bases such as PUB-MED, MEDLINE, SCOPUS indexed journals etc. to look for systematic reviews of the protocols or data interpretation, natural drug/immunological properties and validation. As immune system plays avery important role in the proliferation or suppression of cancer and other autoimmune diseases, It is the dire need to study the effect of such natural compound on the immune system so that a possible drug target or epitope can be identified for the treatment of such diseases. In nutshell there are many nonclinical in vitro and in vivo studies on herbal medicines which commonly supports the traditional therapeutic claims. It has been seen from the previos studies in literature that the yield and composition of bioactive compounds derived from plants are dependent upon the production source,culturing conditions and extraction protocols.Therefore appropriate optimization conditions would certainly assist the medical and scientific fraternity to accept herbal products as potential candidates for cancer treatment. In this article we explored the different natural products, their immunological effects concerning cancer with no or negligible side effects. However,one has to look for potential herb–drug or herb-epitope interactions and how immune system responds to such drugs.


Sign in / Sign up

Export Citation Format

Share Document