scholarly journals Nursing Value Analysis and Risk Assessment of Acute Gastrointestinal Bleeding Using Multiagent Reinforcement Learning Algorithm

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Fang Liu ◽  
Xiaoli Liu ◽  
Changyou Yin ◽  
Hongrong Wang

Gastrointestinal bleeding (GIB) indicates an issue in the digestive system. Blood can be found in feces or vomiting; however, it is not always visible, even if it makes the stool appear darkish or muddy. The bleeding can range in harshness from light to severe and can be dangerous. It is advised that nursing value analysis and risk assessment of patients with GIB is essential, but existing risk assessment techniques function inconsistently. Machine learning (ML) has the potential to increase risk evaluation. For evaluating risk in patients with GIB, scoring techniques are ineffective; a machine learning method would help. As a result, we present а unique machine learning-based nursing value analysis and risk assessment framework in this research to construct a model to evaluate the risk of hospital-based interventions or mortality in individuals with GIB and make a comparison to that of other rating systems. Initially, the dataset is collected, and preprocessing is done. Feature extraction is done using local binary patterns (LBP). Classification is performed using a fuzzy support vector machine (FSVM) classifier. For risk assessment and nursing value analysis, machine learning-based prediction using a multiagent reinforcement algorithm is employed. For improving the performance of the proposed system, we use spider monkey optimization (SMO) algorithm. The performance metrics like classification accuracy, area under the receiver-operating characteristic curve (AUROC), area under the curve (AUC), sensitivity, specificity, and precision are analyzed and compared with the traditional approaches. In individuals with GIB, the suggested technique had a good–excellent prognostic efficacy, and it outperformed other traditional models.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241239
Author(s):  
Kai On Wong ◽  
Osmar R. Zaïane ◽  
Faith G. Davis ◽  
Yutaka Yasui

Background Canada is an ethnically-diverse country, yet its lack of ethnicity information in many large databases impedes effective population research and interventions. Automated ethnicity classification using machine learning has shown potential to address this data gap but its performance in Canada is largely unknown. This study conducted a large-scale machine learning framework to predict ethnicity using a novel set of name and census location features. Methods Using census 1901, the multiclass and binary class classification machine learning pipelines were developed. The 13 ethnic categories examined were Aboriginal (First Nations, Métis, Inuit, and all-combined)), Chinese, English, French, Irish, Italian, Japanese, Russian, Scottish, and others. Machine learning algorithms included regularized logistic regression, C-support vector, and naïve Bayes classifiers. Name features consisted of the entire name string, substrings, double-metaphones, and various name-entity patterns, while location features consisted of the entire location string and substrings of province, district, and subdistrict. Predictive performance metrics included sensitivity, specificity, positive predictive value, negative predictive value, F1, Area Under the Curve for Receiver Operating Characteristic curve, and accuracy. Results The census had 4,812,958 unique individuals. For multiclass classification, the highest performance achieved was 76% F1 and 91% accuracy. For binary classifications for Chinese, French, Italian, Japanese, Russian, and others, the F1 ranged 68–95% (median 87%). The lower performance for English, Irish, and Scottish (F1 ranged 63–67%) was likely due to their shared cultural and linguistic heritage. Adding census location features to the name-based models strongly improved the prediction in Aboriginal classification (F1 increased from 50% to 84%). Conclusions The automated machine learning approach using only name and census location features can predict the ethnicity of Canadians with varying performance by specific ethnic categories.


Author(s):  
Wonju Seo ◽  
You-Bin Lee ◽  
Seunghyun Lee ◽  
Sang-Man Jin ◽  
Sung-Min Park

Abstract Background For an effective artificial pancreas (AP) system and an improved therapeutic intervention with continuous glucose monitoring (CGM), predicting the occurrence of hypoglycemia accurately is very important. While there have been many studies reporting successful algorithms for predicting nocturnal hypoglycemia, predicting postprandial hypoglycemia still remains a challenge due to extreme glucose fluctuations that occur around mealtimes. The goal of this study is to evaluate the feasibility of easy-to-use, computationally efficient machine-learning algorithm to predict postprandial hypoglycemia with a unique feature set. Methods We use retrospective CGM datasets of 104 people who had experienced at least one hypoglycemia alert value during a three-day CGM session. The algorithms were developed based on four machine learning models with a unique data-driven feature set: a random forest (RF), a support vector machine using a linear function or a radial basis function, a K-nearest neighbor, and a logistic regression. With 5-fold cross-subject validation, the average performance of each model was calculated to compare and contrast their individual performance. The area under a receiver operating characteristic curve (AUC) and the F1 score were used as the main criterion for evaluating the performance. Results In predicting a hypoglycemia alert value with a 30-min prediction horizon, the RF model showed the best performance with the average AUC of 0.966, the average sensitivity of 89.6%, the average specificity of 91.3%, and the average F1 score of 0.543. In addition, the RF showed the better predictive performance for postprandial hypoglycemic events than other models. Conclusion In conclusion, we showed that machine-learning algorithms have potential in predicting postprandial hypoglycemia, and the RF model could be a better candidate for the further development of postprandial hypoglycemia prediction algorithm to advance the CGM technology and the AP technology further.


2012 ◽  
Vol 9 (73) ◽  
pp. 1934-1942 ◽  
Author(s):  
Philip J. Hepworth ◽  
Alexey V. Nefedov ◽  
Ilya B. Muchnik ◽  
Kenton L. Morgan

Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaobin Liu ◽  
Xiran Zhang ◽  
Xiaoyi Guo ◽  
Yijie Ding ◽  
Weiwei Shan ◽  
...  

In end-stage renal disease (ESRD), vascular calcification risk factors are essential for the survival of hemodialysis patients. To effectively assess the level of vascular calcification, the machine learning algorithm can be used to predict the vascular calcification risk in ESRD patients. As the amount of collected data is unbalanced under different risk levels, it has an influence on the classification task. So, an effective fuzzy support vector machine based on self-representation (FSVM-SR) is proposed to predict vascular calcification risk in this work. In addition, our method is also compared with other conventional machine learning methods, and the results show that our method can better complete the classification task of the vascular calcification risk.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Linda A. Antonucci ◽  
Alessandra Raio ◽  
Giulio Pergola ◽  
Barbara Gelao ◽  
Marco Papalino ◽  
...  

Abstract Background Recent views posited that negative parenting and attachment insecurity can be considered as general environmental factors of vulnerability for psychosis, specifically for individuals diagnosed with psychosis (PSY). Furthermore, evidence highlighted a tight relationship between attachment style and social cognition abilities, a key PSY behavioral phenotype. The aim of this study is to generate a machine learning algorithm based on the perceived quality of parenting and attachment style-related features to discriminate between PSY and healthy controls (HC) and to investigate its ability to track PSY early stages and risk conditions, as well as its association with social cognition performance. Methods Perceived maternal and paternal parenting, as well as attachment anxiety and avoidance scores, were trained to separate 71 HC from 34 PSY (20 individuals diagnosed with schizophrenia + 14 diagnosed with bipolar disorder with psychotic manifestations) using support vector classification and repeated nested cross-validation. We then validated this model on independent datasets including individuals at the early stages of disease (ESD, i.e. first episode of psychosis or depression, or at-risk mental state for psychosis) and with familial high risk for PSY (FHR, i.e. having a first-degree relative suffering from psychosis). Then, we performed factorial analyses to test the group x classification rate interaction on emotion perception, social inference and managing of emotions abilities. Results The perceived parenting and attachment-based machine learning model discriminated PSY from HC with a Balanced Accuracy (BAC) of 72.2%. Slightly lower classification performance was measured in the ESD sample (HC-ESD BAC = 63.5%), while the model could not discriminate between FHR and HC (BAC = 44.2%). We observed a significant group x classification interaction in PSY and HC from the discovery sample on emotion perception and on the ability to manage emotions (both p = 0.02). The interaction on managing of emotion abilities was replicated in the ESD and HC validation sample (p = 0.03). Conclusion Our results suggest that parenting and attachment-related variables bear significant classification power when applied to both PSY and its early stages and are associated with variability in emotion processing. These variables could therefore be useful in psychosis early recognition programs aimed at softening the psychosis-associated disability.


2021 ◽  
Vol 10 (4) ◽  
pp. 199
Author(s):  
Francisco M. Bellas Aláez ◽  
Jesus M. Torres Palenzuela ◽  
Evangelos Spyrakos ◽  
Luis González Vilas

This work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 617
Author(s):  
Umer Saeed ◽  
Young-Doo Lee ◽  
Sana Ullah Jan ◽  
Insoo Koo

Sensors’ existence as a key component of Cyber-Physical Systems makes it susceptible to failures due to complex environments, low-quality production, and aging. When defective, sensors either stop communicating or convey incorrect information. These unsteady situations threaten the safety, economy, and reliability of a system. The objective of this study is to construct a lightweight machine learning-based fault detection and diagnostic system within the limited energy resources, memory, and computation of a Wireless Sensor Network (WSN). In this paper, a Context-Aware Fault Diagnostic (CAFD) scheme is proposed based on an ensemble learning algorithm called Extra-Trees. To evaluate the performance of the proposed scheme, a realistic WSN scenario composed of humidity and temperature sensor observations is replicated with extreme low-intensity faults. Six commonly occurring types of sensor fault are considered: drift, hard-over/bias, spike, erratic/precision degradation, stuck, and data-loss. The proposed CAFD scheme reveals the ability to accurately detect and diagnose low-intensity sensor faults in a timely manner. Moreover, the efficiency of the Extra-Trees algorithm in terms of diagnostic accuracy, F1-score, ROC-AUC, and training time is demonstrated by comparison with cutting-edge machine learning algorithms: a Support Vector Machine and a Neural Network.


Sign in / Sign up

Export Citation Format

Share Document