scholarly journals Flow Rate and Interference Studies for Copper Binding to a Silica-Immobilized Humin Polymer Matrix: Column and Batch Experiments

2005 ◽  
Vol 3 (1-2) ◽  
pp. 1-14 ◽  
Author(s):  
Jorge L. Gardea-Torresdey ◽  
Carolina Contreras ◽  
Guadalupe de la Rosa ◽  
Jose R. Peralta-Videa

Batch and column experiments were performed to determine the Cu(II) binding capacity of silica-immobilized humin biomass. For column studies, 500 bed volumes of a 0.1 mM Cu(II) solution were passed through humin packed columns at the flow rates of 1, 1.5, 2, and 3 mL/min. The biopolymer showed an average Cu binding capacity of 12 ± 1.5 mg/g and a Cu recovery of about 96.5 % ± 1.5. The breakthrough points for Cu(II) alone were approximately 420, 390, 385, and 300 bed volumes for the flow rates of 1, 1.5, 2 and 3 mL/min, respectively. The interference studies demonstrated that at low concentrations, the hard cations Ca(II) and Mg(II) did not seem to represent a major interference on Cu(II) binding to the humin biopolymer. The selectivity showed by this biopolymer was Cu(II)>Ca(II)>Mg(II). On the other hand, batch experiments showed that Ca(II) + Mg(II) at 100mM each reduced the Cu(II) binding to 73 %. However, 1000 mM concentrations of Ca(II) and Mg(II), separately and in mixture, reduced the Cu(II) binding to 47 %, 44 % and 31 %, respectively. The results of this study showed that immobilized humin in a silica matrix could represent an inexpensive bio-source for Cu removal from contaminated water, even in the presence of low concentrations of the hard cations Ca(II) and Mg(II).

2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


Author(s):  
Alexander D. Bekman ◽  
Sergey V. Stepanov ◽  
Alexander A. Ruchkin ◽  
Dmitry V. Zelenin

The quantitative evaluation of producer and injector well interference based on well operation data (profiles of flow rates/injectivities and bottomhole/reservoir pressures) with the help of CRM (Capacitance-Resistive Models) is an optimization problem with large set of variables and constraints. The analytical solution cannot be found because of the complex form of the objective function for this problem. Attempts to find the solution with stochastic algorithms take unacceptable time and the result may be far from the optimal solution. Besides, the use of universal (commercial) optimizers hides the details of step by step solution from the user, for example&nbsp;— the ambiguity of the solution as the result of data inaccuracy.<br> The present article concerns two variants of CRM problem. The authors present a new algorithm of solving the problems with the help of “General Quadratic Programming Algorithm”. The main advantage of the new algorithm is the greater performance in comparison with the other known algorithms. Its other advantage is the possibility of an ambiguity analysis. This article studies the conditions which guarantee that the first variant of problem has a unique solution, which can be found with the presented algorithm. Another algorithm for finding the approximate solution for the second variant of the problem is also considered. The method of visualization of approximate solutions set is presented. The results of experiments comparing the new algorithm with some previously known are given.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Seong-Jong Kim ◽  
Hye Hyeon Han ◽  
Sei Kwang Hahn

Abstract Background Wilson disease (WD) is a genetic disorder of copper storage, resulting in pathological accumulation of copper in the body. Because symptoms are generally related to the liver, chelating agents capable of capturing excess copper ions after targeted delivery to the liver are highly required for the treatment of WD. Methods We developed hyaluronate-diaminohexane/black phosphorus (HA-DAH/BP) complexes for capturing copper ions accumulated in the liver for the treatment of WD. Results HA-DAH/BP complexes showed high hepatocyte-specific targeting efficiency, selective copper capturing capacity, excellent biocompatibility, and biodegradability. HA enhanced the stability of BP nanosheets and increased copper binding capacity. In vitro cellular uptake and competitive binding tests verified targeted delivery of HA-DAH/BP complexes to liver cells via HA receptor mediated endocytosis. The cell viability test confirmed the high biocompatibility of HA-DAH/BP complexes. Conclusion HA-DAH/BP complexes would be an efficient copper chelating agent to remove accumulated copper in the liver for the WD treatment.


2010 ◽  
Vol 61 (3) ◽  
pp. 599-606 ◽  
Author(s):  
Johnsely S. Cyrus ◽  
G. B. Reddy

Constructed wetland systems have gained attention as attractive solutions for wastewater treatment. Wetlands are not efficient to treat wastewater with high concentrations of phosphorus (P). In order to remove high soluble P loads by wetland, sorbent beds can be added prior to the discharge of wastewater into wetlands. Sorption by sorbent materials is identified as a method for trapping excess P in wastewaters. In the present investigation, shale has been identified as a sorbent material for removal of phosphate (PO4-P) due to the cost effectiveness, stability and possibility of regeneration. The study focuses on the removal of PO4-P from wastewater using shale and the feasibility of using the P-sorbed material as slow-release fertilizer. Phosphorus sorption experiments were conducted by using shale (2 mm and 2–4.7 mm). Results indicate that Shale I (particle size = 2 mm) showed the highest sorption of PO4-P (500 ± 44 mg kg−1). Breakthrough point was reached within 10 h in columns with flow rates of 2 and 3 ml min−1. Lower flow rate of 1 ml min−1 showed an average residence time of about 2 h while columns with a higher flow rate of 3 ml min−1 showed a residence time of about 40 minutes. Variation in flow rate did not influence the desorption process. Since very low concentrations of PO4-P are released, Shale saturated with PO4-P may be used as a slow nutrient release source of P or as a soil amendment. The sorbent can also be regenerated by removing the sorbed PO4-P by using 0.1 N HCl.


Author(s):  
Masahiro Ishida ◽  
Daisaku Sakaguchi ◽  
Hironobu Ueki

An optimization of the inlet ring groove arrangement has been pursued in the present study for obtaining better impeller characteristics and a wider operation range at both small and large flow rates in a high specific speed type centrifugal impeller with inducer. The effects of the shape parameters with respect to the inlet ring groove on the impeller characteristic and the flow incidence were analyzed mainly based on numerical simulations, but also compared to the experimental results. At small flow rates, a significant improvement in the impeller characteristic is achieved due to reduction in the excessive-positive flow incidence by optimizing both location and width of the rear groove near the inducer tip throat. On the other hand, the impeller characteristic is improved at large flow rates by implementing the corner radius at the rear groove edge and by placing another front ring groove in the suction pipe. As a result, by the optimized configuration of the front and rear ring grooves, the unstable flow range of the test impeller can be reduced by about 50% without deterioration of the impeller characteristic even at the 125% flow rate.


1964 ◽  
Vol 206 (2) ◽  
pp. 338-340 ◽  
Author(s):  
Pierre Bois

The distribution of mast cells in muscle and liver of dystrophic mice was studied; histamine and histidine decarboxylase activity was also measured in the same tissues. Mast cells were significantly more numerous in dystrophic muscles. On the other hand, very few cells could be counted in the liver of either control or dystrophic animals. Histamine concentration was higher in muscle and liver of dystrophic mice; no visible increase in histidine decarboxylase activity could be measured by the methods used. It is concluded that histamine-binding capacity is increased in some tissues of dystrophic mice.


Author(s):  
Lv Ye ◽  
Zhao Liu ◽  
Xiangyu Wang ◽  
Zhenping Feng

This paper presents a numerical simulation of composite cooling on a first stage vane of a gas turbine, in which gas by fixed composition mixture is adopted. To investigate the flow and heat transfer characteristics, two internal chambers which contain multiple arrays of impingement holes are arranged in the vane, several arrays of pin-fins are arranged in the trailing edge region, and a few arrays of film cooling holes are arranged on the vane surfaces to form the cooling film. The coolant enters through the shroud inlet, and then divided into two parts. One part is transferred into the chamber in the leading edge region, and then after impinging on the target surfaces, it proceeds further to go through the film cooling holes distributed on the vane surface, while the other part enters into the second chamber immediately and then exits to the mainstream in two ways to effectively cool the other sections of the vane. In this study, five different coolant flow rates and six different inlet pressure ratios were investigated. All the cases were performed with the same domain grids and same boundary conditions. It can be concluded that for the internal surfaces, the heat transfer coefficient changes gradually with the coolant flow rate and the inlet total pressure ratio, while for the external surfaces, the average cooling effectiveness increases with the increase of coolant mass flow rates while decreases with the increase of the inlet stagnation pressure ratios within the study range.


1988 ◽  
Vol 51 (7) ◽  
pp. 525-530 ◽  
Author(s):  
MOUSTAFA A. EL-SHENAWY ◽  
ELMER H. MARTH

The ability of Listeria monocytogenes to grow or survive was determined using tryptose broth at pH 5.6 or 5.0, supplemented with 0, 0.05. 0.1, 0.15. 0.2. 0.25 or 0.3% sodium benzoate, and incubated at 4,13,21 or 35°C. The bacterium grew in benzoate-free controls under all conditions except at 4°C and pH 5.0. At pH 5.6 and 4°C, after 60 d, L. monocytogenes (initial population ca. 103/ml) was inactivated by 0.2, 0.25 and 0.3% sodium benzoate. Other concentrations of benzoate permitted slight growth during the first 36 d of incubation followed by a decrease in populations of the pathogen. At pH 5.0 and 4°C, from 0.15 to 0.3% benzoate completely inactivated the pathogen in 24 to 30 d, whereas the other concentrations caused a gradual decrease in the population during the 66-d incubation period. At 13°C and pH 5.6, L. monocytogenes grew (more at lower than higher concentrations of benzoate) in the presence of all concentrations of benzoate except 0.25 or 0.3%, which prohibited growth throughout a 264-h incubation period. Reducing the pH to 5.0 minimized growth at the two low concentrations of benzoate and caused slight decreases in population at the other concentrations of benzoate. At 21 and 35°C and pH 5.6, appreciable growth of L. monocytogenes occurred in the presence of 0.2% or less sodium benzoate, whereas higher concentrations were inhibitory, permitting little if any growth by the pathogen. Reducing the pH to 5.0 allowed limited growth of the pathogen at 21 and 35°C when the medium contained 0.05 or 0.1% sodium benzoate. Higher concentrations caused either complete inhibition or inhibition plus partial or complete inactivation of the pathogen during incubations of 117 h at 21°C or 78 h at 35°C.


Author(s):  
Massimo Masi ◽  
Andrea Lazzaretto

The flow path close to the suction side of fan rotor blades mostly affects the overall drag of the blading. The blade lift is affected as well because of the separation of the low energy boundary layer that drives the blade into stall at low fan flow rates. Forward sweep allows to position the airfoil sections of blades featuring a positive circulation gradient along the span so that they “accompany” the near-wall flow trajectories at the blade suction side. So, rotor efficiency and stall margin of the fan can be improved. On the other hand, blade end effects play a relevant role in high hub-to-tip and low aspect ratio rotors and may compromise the effectiveness of forward sweep. Nevertheless, some authors in the literature stated the beneficial contribution of changing the sweep angle at the ends of the blade both at design and off-design conditions. The paper studies the end effects on constant-swirl design rotors by means of CFD simulations focusing on the distribution of blade sweep in the near-tip region. In particular, the performance and efficiency calculated for a forward swept tube-axial fan featuring a hub-to-tip ratio equal to 0.4 are compared with those estimated for the corresponding unswept fan at equal duty point. Several modifications of the sweep distribution in the blade tip region are considered in the swept fan to quantify their effect on performance, efficiency and stall margin. Results show that the addition of up to 6 degrees of local forward sweep at the blade tip to the unswept blading does not affect fan pressure at design operation. On the other hand, this local increase of the sweep angle allows for a very notable increase of the peak pressure and efficiency at flow rates close to stall inception.


Sign in / Sign up

Export Citation Format

Share Document