scholarly journals Wave loadings on a vertical cylinder due to heave motion

1995 ◽  
Vol 18 (1) ◽  
pp. 151-170 ◽  
Author(s):  
D. D. Bhatta ◽  
M. Rahman

Wave forces and moments due to scattering and radiation for a vertical circular cylinder heaving in water of finite depth are derived analytically. These are derived from the total velocity potential which can be decomposed as two velocity potentials; one due to scattering in the presence of an incident wave on fixed structure (diffraction problem), and the other due to radiation by the heave motion on calm water (radiation problem). For each part, the velocity potential is derived by considering two regions, namely, interior region and exterior region. The complex matrix equations are solved numerically to determine the unknown coefficients to compute the wave loads. Some numerical results are presented for different depth to radius and draft to radius ratios.

2003 ◽  
Vol 2003 (57) ◽  
pp. 3643-3656 ◽  
Author(s):  
Dambaru D. Bhatta

We derived added mass and damping coefficients of a vertical floating circular cylinder due to surge motion in calm water of finite depth. This is done by deriving the velocity potential for the cylinder by considering two regions, namely, interior region and exterior region. The velocity potentials for these two regions are obtained by the method of separation of variables. The continuity of the solutions has been maintained at the imaginary interface of these regions by matching the functions and gradients of each solution. The complex matrix equation is numerically solved to determine the unknown coefficients. Some computational results are presented for different depth-to-radius and draft-to-radius ratios.


1973 ◽  
Vol 17 (02) ◽  
pp. 61-71
Author(s):  
H. S. Chen ◽  
C. C. Mei

Exciting forces and moments due to plane incident waves on a stationary platform are studied in this paper. The platform is a vertical cylinder with a finite draft and elliptical cross section. The mathematical solution to the diffraction problem is obtained on the basis of the linearized long wave approximation. Numerical results via Mathieu functions are presented for a shiplike body with beam-to-length ratio Various draft-to-depth ratios and angles of incidence are considered. Results have been checked with the limiting case of a circular cylinder for the long-wave length range. Aside from its own practical interest, the present theory provides a basis for comparison with other approximate theories of slender-body type and serves as a prelude to the corresponding calculations for arbitrary wavelengths.


Author(s):  
Spyros A. Mavrakos ◽  
Dimitrios N. Konispoliatis

A floating oscillating water column device (OWC) consists of a vertical cylinder, with a finite wall thickness, partly submerged as an open-bottom chamber in which air is trapped above the inner water free surface. The chamber is connected with the outer atmosphere by a duct housing an air turbine. Forced by incident waves from any direction, the water surface inside pushes the dry air above through a Wells turbine system to generate power. In the present contribution the volume flows, the wave forces, the added mass and damping coefficients and the mean second-order loads for various configurations of OWC devices are being presented. Finally, it is tested how differentiations in the device’s geometry (wall thickness, draught, shape of the chamber, turbine characterises) affect the inner pressure and as a result the absorbed power by the device.


Author(s):  
Matiur Rahman ◽  
S. Hossein Mousavizadegan

Analytical solutions for the wave-induced second-order time independent drift forces and moments due to the dynamic and the waterline pressures on a fixed vertical circular cylinder are derived. The results are displayed graphically for a number of depth to radius ratios. An analytical technique is used to determine the first-order velocity potential by considering two regions, namely, interior region and exterior region. We have also demonstrated a numerical solution by a higher order panel method in which the kernel of the integral equation is modified to make it non-singular and amenable to solutions by the Gaussian quadrature formula. The numerical results are found to comply with the analytical solutions.


Author(s):  
Shengnan Liu ◽  
Muk Chen Ong ◽  
Charlotte Obhrai

A three-dimensional (3D) numerical two-phase flow model based on solving unsteady Reynolds-averaged Navier–Stokes (URANS) equations has been used to simulate breaking waves and steep waves past a vertical cylinder on a 1:10 slope. The volume of fluid (VOF) method is employed to capture the free surface and the k–ω shear–stress transport (k–ω SST) turbulence model is used to simulate the turbulence effects. Mesh and time-step refinement studies have been conducted. The numerical results of wave forces on the structure are compared with the experimental data (Irschik et al., 2004, “Breaking Wave Loads on a Slender Pile in Shallow Water,” Coastal Engineering, Vol. 4, World Scientific, Singapore, pp. 568–581) to validate the numerical model, and the numerical results are in good agreement with the measured data. The wave forces on the structure at different Keulegan–Carpenter (KC) numbers are discussed in terms of the slamming force. The secondary load cycles are observed after the wave front past the structure. The dynamic pressure and velocity distribution, as well as the characteristics of the vortices around the structure at four important time instants, are studied.


1965 ◽  
Vol 22 (2) ◽  
pp. 253-256 ◽  
Author(s):  
W. E. Williams

The problem considered is that of the diffraction of the field of a point source in a fluid of infinite depth by an infinite vertical cylinder. It is shown that the surface wave component of the velocity potential may be expressed in terms of the solution to a classical electromagnetic (or acoustic) diffraction problem.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 570
Author(s):  
Anargyros S. Mavrakos ◽  
Dimitrios N. Konispoliatis ◽  
Dimitrios G. Ntouras ◽  
George P. Papadakis ◽  
Spyros A. Mavrakos

Moonpool-type floaters were initially proposed for applications such as artificial islands or as protecting barriers around a small area enabling work at the inner surface to be carried out in relatively calm water. In recent years, a growing interest on such structures has been noted, especially in relation to their use as heaving wave energy converters or as oscillating water column (OWC) devices for the extraction of energy from waves. Furthermore, in the offshore marine industry, several types of vessels are frequently constructed with moonpools. The present paper deals with the hydrodynamics of bottomless cylindrical bodies having vertical symmetry axis and floating in a water of finite depth. Two computation methods were implemented and compared: a theoretical approach solving analytically the corresponding diffraction problem around the moonpool floater and a computational fluid dynamics (CFD) solver, which considers the viscous effects near the sharp edges of the body (vortex shedding) as non-negligible. Two different moonpool-type configurations were examined, and some interesting phenomena were discussed concerning the viscous effects and irregularities caused by the resonance of the confined fluid.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 315
Author(s):  
Francesco Aristodemo ◽  
Giuseppe Tripepi ◽  
Luana Gurnari ◽  
Pasquale Filianoti

We present an analysis related to the evaluation of Morison and transverse force coefficients in the case of a submerged square barrier subject to the action of solitary waves. To this purpose, two-dimensional experimental research was undertaken in the wave flume of the University of Calabria, in which a rigid square barrier was provided by a discrete battery of pressure sensors to determine the horizontal and vertical hydrodynamic forces. A total set of 18 laboratory tests was carried out by varying the motion law of a piston-type paddle. Owing to the low Keulegan–Carpenter numbers of the tests, the force regime of the physical tests was defined by the dominance of the inertia loads in the horizontal direction and of the lift loads in the vertical one. Through the use of the time series of wave forces and the undisturbed kinematics, drag, horizontal inertia, lift, and vertical inertia coefficients in the Morison and transverse semi-empirical schemes were calculated using time-domain approaches, adopting the WLS1 method for the minimization of the difference between the maximum forces and the linked phase shifts by comparing laboratory and calculated wave loads. Practical equations to calculate these coefficients as a function of the wave non-linearity were introduced. The obtained results highlighted the prevalence of the horizontal forces in comparison with the vertical ones which, however, prove to be fundamental for stability purposes of the barrier. An overall good agreement between the experimental forces and those calculated by the calibrated semi-empirical schemes was found, particularly for the positive horizontal and vertical loads. The analysis of the hydrodynamic coefficients showed a decreasing trend for the drag, horizontal inertia, and lift coefficients as a function of the wave non-linearity, while the vertical inertia coefficient underlined an initial increasing trend and a successive slight decreasing trend.


Sign in / Sign up

Export Citation Format

Share Document