scholarly journals Effects of copper and zinc on proteoglycan metabolism in articular cartilage

1996 ◽  
Vol 5 (2) ◽  
pp. 95-99 ◽  
Author(s):  
M. Pasqualicchio ◽  
R. Gasperini ◽  
G. P. Velo ◽  
M. E. Davies

Co-Cultures of porcine articular cartilage and synovium or synovial conditioned medium were used as anin vitromodel to mimic inflammatory events at the cartilage/synovial junction in degenerative joint disease. This model provides a useful tool to assess the anti-inflammatory and antiarthritic properties of pharmacological agents. In this study the effects of copper and zinc on (i) PG synthesis by cartilage and (ii) synovial-induced PG depletion have been investigated. Copper sulphate at a concentration of 0.01 mM did not stimulate PG synthesis significantly in cultured cartilage explants but completely abrogated the inhibitory effects of synovial tissue in co-culture experiments. This finding was supported by the histological demonstration of copper-dependent reversal of the PG depletion in cartilage exposed to synovial conditioned medium. Zinc sulphate at 0.01 mM had no effect on PG synthesis and was unable to protect cartilage against synovialinduced PG depletion. These results reveal possible mechanisms by which copper exerts its anti-inflammatory and anti-arthritic actions.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Jae Gwang Park ◽  
Young-Su Yi ◽  
Yo Han Hong ◽  
Sulgi Yoo ◽  
Sang Yun Han ◽  
...  

Although osteoarthritis (OA), a degenerative joint disease characterized by the degradation of joint articular cartilage and subchondral bones, is generally regarded as a degenerative rather than inflammatory disease, recent studies have indicated the involvement of inflammation in OA pathogenesis. Tabebuia avellanedae has long been used to treat various diseases; however, its role in inflammatory response and the underlying molecular mechanisms remain poorly understood. In this study, the pharmacological effects of Tabetri (Tabebuia avellanedae ethanol extract (Ta-EE)) on OA pathogenesis induced by monoiodoacetate (MIA) and the underlying mechanisms were investigated using experiments with a rat model and in vitro cellular models. In the animal model, Ta-EE significantly ameliorated OA symptoms and reduced the serum levels of inflammatory mediators and proinflammatory cytokines without any toxicity. The anti-inflammatory activity of Ta-EE was further confirmed in a macrophage-like cell line (RAW264.7). Ta-EE dramatically suppressed the production and mRNA expressions of inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells without any cytotoxicity. Finally, the chondroprotective effect of Ta-EE was examined in a chondrosarcoma cell line (SW1353). Ta-EE markedly suppressed the mRNA expression of matrix metalloproteinase genes. The anti-inflammatory and chondroprotective activities of Ta-EE were attributed to the targeting of the nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) signaling pathways in macrophages and chondrocytes.


2021 ◽  
Author(s):  
Samuel Joshua Pragasam Sampath ◽  
Subha Narayan Rath ◽  
Nagasuryaprasad Kotikalapudi ◽  
Vijayalakshmi Venkatesan

Abstract Osteoarthritis (OA) is the most prevalent joint disease predominantly characterized by inflammation which drives cartilage destruction. Mesenchymal stem cells-condition medium (MSC-CM) or the secretome is enriched with bioactive factors and possesses anti-inflammatory and regenerative effects. The present study aimed at evaluating the effects of combining MSC-conditioned medium with stigmasterol compared with per se treatments in alleviating interleukin-1beta (IL-1β)-induced inflammation in rat chondrocytes. Stigmasterol is a phytosterol exhibiting anti-inflammatory effects. IL-1β (10ng/ml) was used to induce inflammation and mimic OA in-vitro in primary rat articular chondrocytes. The IL-1β-stimulated chondrocytes were treated with MSC-CM, stigmasterol, and a combination of MSC-CM and stigmasterol for 24 hours. Cell viability was measured using MTT assay. Protein expression of inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), collagen II (COL2A1) and matrix metalloproteinase (MMP)‑13 were evaluated by immunofluorescence. Gene expression levels of MMP-3, MMP-13 and A Disintegrin-like and Metalloproteinases with Thrombospondin Motifs (ADAMTS)-5 were measured using qRT-PCR. NF-κB signaling pathway was studied using western blotting. A significant reduction in the expression of iNOS, IL-6, MMP-3, MMP-13 and ADAMTS-5 and a significant increase in COL2A1 expression was observed in the rat chondrocytes across all the treatment groups. However, the combination treatment of MSC-CM and stigmasterol remarkably reversed the IL-1β-induced pro-inflammatory/pro-catabolic responses to near normal levels comparable to the control group. The combination treatment (MSC-CM+stigmasterol) elicited a superior anti-inflammatory/anti-catabolic effect by inhibiting the IL-1β-induced NF-κB activation evidenced by the negligible phosphorylation of p65 and IκBα subunits, thereby emphasizing the benefit of the combination therapy over the per se treatments.


Cartilage ◽  
2021 ◽  
pp. 194760352110115
Author(s):  
Lasun O. Oladeji ◽  
Aaron M. Stoker ◽  
James P. Stannard ◽  
James L. Cook

Objective To evaluate differences in pro-inflammatory and degradative mediator production from osteoarthritic knee articular cartilage explants treated with a hyperosmolar saline solution supplemented with anti-inflammatory components (l-glutamine, ascorbic acid, sodium pyruvate, epigallocatechin gallate [EGCG], and dexamethasone) or normal saline using an in vitro model for knee arthroscopy. Design Full-thickness 6 mm articular cartilage explants ( n = 12/patient) were created from femoral condyle and tibial plateau samples collected from patients who received knee arthroplasty. One explant half was treated for 3 hours with hyperosmolar saline (600 mOsm/L) supplemented with anti-inflammatory components and the corresponding half with normal saline (308 mOsm/L). Explants were cultured for 3 days and then collected for biomarker analyses. Media biomarker concentrations were normalized to the wet weight of the tissue (mg) and were analyzed by a paired t test with significance set at P < 0.05. Results Cartilage was collected from 9 females and 2 males (mean age = 68 years). Concentrations of MCP-1 ( P < 0.001), IL-8 ( P = 0.03), GRO-α ( P = 0.02), MMP-1 ( P < 0.001), MMP-2 ( P < 0.001), and MMP-3 ( P < 0.001) were significantly lower in explant halves treated with the enhanced hyperosmolar solution. When considering only those cartilage explants in the top tercile of tissue metabolism, IL-6 ( P = 0.005), IL-8 ( P = 0.0001), MCP-1 ( P < 0.001), GRO-α ( P = 0.0003), MMP-1 ( P < 0.001), MMP-2 ( P < 0.001), MMP-3 ( P < 0.001), and GAG expression ( P = 0.0001) was significantly lower in cartilage explant halves treated with the enhanced hyperosmolar solution. Conclusions Treatment of cartilage explants with a hyperosmolar saline arthroscopic irrigation solution supplemented with anti-inflammatory components was associated with significant decreases in inflammatory and degradative mediator production and mitigation of proteoglycan loss.


1983 ◽  
Vol 50 (03) ◽  
pp. 652-655 ◽  
Author(s):  
F Bauer ◽  
P Schulz ◽  
G Reber ◽  
C A Bouvier

SummaryThree mucopolysaccharides (MPS) used in the treatment of degenerative joint disease were compared to heparin to establish their relative potencies on 3 coagulation tests, the aPTT, the antifactor X a activity and the dilute thrombin time. One of the compounds, Arteparon®, was one fourth as potent as heparin on the aPTT, but had little or no influence on the 2 other tests. Further in vitro studies suggested that Arteparon® acted at a higher level than factor Xa generation in the intrinsic amplification system and that its effect was independent of antithrombin III. In vivo administration of Arteparon® confirmed its anticoagulant properties, which raises the question of the clinical use of this MPS.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Hee-Geun Jo ◽  
Geon-Yeong Lee ◽  
Chae Yun Baek ◽  
Ho Sueb Song ◽  
Donghun Lee

Osteoarthritis (OA) is an age-related joint disease and one of the most common degenerative bone diseases among elderly people. The currently used therapeutic strategies relying on nonsteroidal anti-inflammatory drugs (NSAIDs) and steroids for OA are often associated with gastrointestinal, cardiovascular, and kidney disorders, despite being proven effective. Aucklandia lappa is a well-known traditional medicine. The root of A. lappa root has several bioactive compounds and has been in use as a natural remedy for bone diseases and other health conditions. We evaluated the A. lappa root extracts on OA progression as a natural therapeutic agent. A. lappa substantially reduced writhing numbers in mice induced with acetic acid. Monosodium iodoacetate (MIA) was injected into the rats through their knee joints of rats to induce experimental OA, which shows similar pathological characteristics to OA in human. A. lappa substantially reduced the MIA-induced weight-bearing of hind limb and reversed the cartilage erosion in MIA rats. IL-1β, a representative inflammatory mediator in OA, was also markedly decreased by A. lappa in the serum of MIA rats. In vitro, A. lappa lowered the secretion of NO and suppressed the IL-1β, COX-2, IL-6, and iNOS production in RAW264.7 macrophages activated with LPS. Based on its analgesic and anti-inflammatory effects, A. lappa could be a potential remedial agent against OA.


2021 ◽  
Author(s):  
Ding-Chao Zhu ◽  
Yi-Han Wang ◽  
Jia-Hao Lin ◽  
Zhi-Min Miao ◽  
Jia-Jing Xu ◽  
...  

Osteoarthritis (OA) is a common degenerative joint disease characterized by articular cartilage degeneration and inflammation. Currently, there is hardly any effective treatment for OA due to its complicated pathology and...


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Jörg Jerosch

Osteoarthritis (OA) is a degenerative joint disease that is characterized by increasing loss of cartilage, remodeling of the periarticular bone, and inflammation of the synovial membrane. Besides the common OA therapy with nonsteroidal anti-inflammatory drugs (NSAIDs), the treatment with chondroprotectives, such as glucosamine sulfate, chondroitin sulfate, hyaluronic acid, collagen hydrolysate, or nutrients, such as antioxidants and omega-3 fatty acids is a promising therapeutic approach. Numerous clinical studies have demonstrated that the targeted administration of selected micronutrients leads to a more effective reduction of OA symptoms, with less adverse events. Their chondroprotective action can be explained by a dual mechanism: (1) as basic components of cartilage and synovial fluid, they stimulate the anabolic process of the cartilage metabolism; (2) their anti-inflammatory action can delay many inflammation-induced catabolic processes in the cartilage. These two mechanisms are able to slow the progression of cartilage destruction and may help to regenerate the joint structure, leading to reduced pain and increased mobility of the affected joint.


Sign in / Sign up

Export Citation Format

Share Document