scholarly journals MiR-520b/e Regulates Proliferation and Migration by Simultaneously Targeting EGFR in Gastric Cancer

2016 ◽  
Vol 40 (6) ◽  
pp. 1303-1315 ◽  
Author(s):  
Shuang Li ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Xinyi Wang ◽  
Rui Liu ◽  
...  

Background: MicroRNAs (miRNAs) have been demonstrated to play a crucial role in tumorigenesis. Previous studies have shown that miR-520b/e acts as a tumor suppressor in several tumors. Other studies indicated that epidermal growth factor receptor (EGFR) is highly expressed in many tumors, and involved in the development of tumors, such as cell proliferation, migration, angiogenesis and apoptosis. However, the correlation of miRNAs and EGFR in gastric cancer (GC) has not been adequately investigated. Our aim was to explore the relationship. Methods: The expression levels of EGFR and miR-520b/e were examined by RT-PCR and Western blot. We also investigated the relationship between EGFR and miR-520b/e in GC cell lines by relevant experiments. Results: In this study, we found that miR-520b/e inhibits the protein expression of EGFR by directly binding with the 3'-untranslated region (3'-UTR). And it was shown that the down-regulation of miR-520b/e promotes cell proliferation and migration by negative regulation of the EGFR pathway, while over-expression of miR-520b/e inhibits these properties. In addition, the biological function of EGFR in GC cell lines was validated by silencing and over-expression assays respectively. Conclusions: Taken together, our results demonstrate that miR-520b/e acts as a tumor suppressor by regulating EGFR in GC, and provide a novel marker and insight for the potential therapeutic target of GC.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1234
Author(s):  
Mauricio Reyna-Jeldes ◽  
Erwin De la Fuente-Ortega ◽  
Daniela Cerda ◽  
Erandi Velázquez-Miranda ◽  
Katherine Pinto ◽  
...  

Gastric cancer (GC) is a major health concern worldwide, presenting a complex pathophysiology that has hindered many therapeutic efforts so far. In this context, purinergic signaling emerges as a promising pathway for intervention due to its known role in cancer cell proliferation and migration. In this work, we explored in more detail the role of purinergic signaling in GC with several experimental approaches. First, we measured extracellular ATP concentrations on GC-derived cell lines (AGS, MKN-45, and MKN-74), finding higher levels of extracellular ATP than those obtained for the non-tumoral gastric cell line GES-1. Next, we established the P2Y2 and P2X4 receptors (P2Y2R and P2X4R) expression profile on these cells and evaluated their role on cell proliferation and migration after applying overexpression and knockdown strategies. In general, a P2Y2R overexpression and P2X4R downregulation pattern were observed on GC cell lines, and when these patterns were modified, concomitant changes in cell viability were observed. These modifications on gene expression also modified transepithelial electrical resistance (TEER), showing that higher P2Y2R levels decreased TEER, and high P2X4R expression had the opposite effect, suggesting that P2Y2R and P2X4R activation could promote and suppress epithelial-mesenchymal transition (EMT), respectively. These effects were confirmed after treating AGS cells with UTP, a P2Y2R-agonist that modified the expression patterns towards mesenchymal markers. To further characterize the effects of P2Y2R activation on EMT, we used cDNA microarrays and observed that UTP induced important transcriptional changes on several cell processes like cell proliferation induction, apoptosis inhibition, cell differentiation induction, and cell adhesion reduction. These results suggest that purinergic signaling plays a complex role in GC pathophysiology, and changes in purinergic balance can trigger tumorigenesis in non-tumoral gastric cells.


2004 ◽  
Vol 287 (3) ◽  
pp. F365-F372 ◽  
Author(s):  
Shougang Zhuang ◽  
Yujing Dang ◽  
Rick G. Schnellmann

We showed that renal proximal tubular cells (RPTC) can proliferate and migrate following plating and oxidant or mechanical injury in the absence of exogenous growth factors; however, the mechanisms of this response remain unclear. We examined whether epidermal growth factor receptor (EGFR) signaling is activated following plating and mechanical injury and mediates RPTC proliferation and migration. EGFR, Akt [a target of phosphoinositide-3-kinase (PI3K)], and ERK1/2 were activated after plating and mechanical injury, and their phosphorylation was further enhanced by addition of exogenous EGF. Inactivation of the EGFR with the selective inhibitor AG-1478 completely blocked phosphorylation of EGFR, Akt, and ERK1/2 and blocked cell proliferation and migration after plating and injury. Inhibition of PI3K with LY-294002 blocked Akt phosphorylation and proliferation, whereas U-0126 blocked ERK1/2 phosphorylation but had no effect on proliferation. Furthermore, p38 was phosphorylated following mechanical injury and the p38 inhibitor SB-203580 blocked p38 phosphorylation and cell migration. In contrast, neither PI3K nor ERK1/2 inhibition blocked cell migration. These results show that EGFR activation is required for RPTC proliferation and migration and that proliferation is mediated by PI3K, whereas migration is mediated by p38.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xue-Mei Wan ◽  
Xue-Lei Zhou ◽  
Yong-Jun Du ◽  
Hui Shen ◽  
Zhengxia Yang ◽  
...  

Threonine aspartase 1 (TASP1) was reported to function in the development of cancer. However, the regulatory mechanism of TASP1 in gastric cancer (GC) remains unclear. In this study, we determined the expression of TASP1 in tissues of GC patients, GC cells by qRT-PCR, and western blot and assessed the relationship between TASP1 and GC cell proliferation and migration via CCK-8 and transwell assay. It was found that the expression of TASP1 in GC tissues or GC cell lines was significantly higher than that in normal adjacent tissues or normal cells. The proliferation and migration of GC cells were inhibited upon TASP1 knockdown. Mechanism investigation revealed that TASP1 promoted GC cell proliferation and migration through upregulating the p-AKT/AKT expression. TASP1 induced GC cell migration via the epithelial -mesenchymal transition (EMT) pathway. In conclusion, TASP1 promotes GC progression through the EMT and AKT/p-AKT pathway, and it may serve as a new potential biomarker and therapeutic target for GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuyi Han ◽  
Yan Qi ◽  
Yihui Xu ◽  
Min Wang ◽  
Jun Wang ◽  
...  

Abstract Background Gastric cancer (GC) remains an important cancer worldwide. Further understanding of the molecular mechanisms of gastric carcinogenesis will enhance the diagnosis and treatment of GC. Methods The expression of DLEU2 and ETS2 was analyzed in several GC cell lines using GEPIA online analyze, qRT-PCR and immunohistochemistry. The biological behavior of GC cells was detected by CCK8, clone formation, transwell, wound healing, western blot, and flow cytometry assay. More in-depth mechanisms were studied. Results DLEU2 was significantly up-regulated in GC tissues and cell lines. The expression of DLEU2 was significantly associated with pathological grading and TNM stage of GC patients. Furthermore, knockdown of DLEU2 inhibited the proliferation, migration, and invasion of AGS and MKN-45 cells, while overexpression of DLEU2 promoted the proliferation, migration, and invasion of HGC-27 cells. MiR-30a-5p could directly bind to the 3’ UTR region of ETS2. Moreover, DLEU2 bound to miR-30a-5p through the same binding site, which facilitated the expression of ETS2. Knockdown of DLEU2 reduced the protein level of intracellular ETS2 and inhibited AKT phosphorylation, while overexpression of DLEU2 induced the expression of ETS2 and the phosphorylation of AKT. ETS2 was highly expressed in GC tissues. The expression of ETS2 was significantly associated with age, pathological grading, and TNM stage. ETS2 overexpression promoted cell proliferation and migration of AGS and MKN-45 cells. Furthermore, ETS2 overexpression rescued cell proliferation and migration inhibition induced by DLEU2 down-regulation and miR-30a-5p up-regulation in AGS and MKN-45 cells. Conclusions DLEU2 is a potential molecular target for GC treatment.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


2021 ◽  
Vol 53 (4) ◽  
pp. 454-462
Author(s):  
Ting Li ◽  
Xiaomin Zuo ◽  
Xiangling Meng

Abstract Circular RNAs (circRNAs) play either oncogenic or tumor suppressive roles in gastric cancer (GC). A previous study demonstrated that circ_002059, a typical circRNA, was downregulated in GC tissues. However, the role and mechanism of circ_002059 in GC development are still unknown. In this study, the levels of circ_002059, miR-182, and metastasis suppressor-1 (MTSS1) were examined by real-time quantitative polymerase chain reaction and western blot analysis. Cell proliferation and migration were evaluated by MTT assay and Transwell migration assay, respectively. The interactions between miR-182 and circ_002059 or MTSS1 were analyzed by dual-luciferase reporter assay. A GC xenograft model was established to validate the role of circ_002059 in GC progression in vivo. Overexpression of circ_002059 significantly inhibited, whereas knockdown of circ_002059 notably facilitated, cell proliferation and migration in GC cells. MTSS1 was found to be a direct target of miR-182 and circ_002059 upregulated MTSS1 expression by competitively sponging miR-182. Transfection with miR-182 mimic and MTSS1 silencing abated the inhibitory effect of circ_002059 on GC progression. Circ_002059 inhibited GC cell xenograft tumor growth by regulating miR-182 and MTSS1 expression. Collectively, Circ_002059 inhibited GC cell proliferation and migration in vitro and xenograft tumor growth in mice, by regulating the miR-182/MTSS1 axis.


Sign in / Sign up

Export Citation Format

Share Document