Evidence of an in vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque

2017 ◽  
Vol 51 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Gareth J. Owens ◽  
Richard J.M. Lynch ◽  
Christopher K. Hope ◽  
Lee Cooper ◽  
Susan M. Higham ◽  
...  

The purpose of this study was to determine whether or not the dual constant-depth film fermenter (dCDFF) is able to produce caries-like enamel lesions and to ascertain further information regarding the performance of this fully functional biological caries model. Conditions were defined by the continuation (CF) or cessation (FF) of a saliva-type growth medium supply during 50-mM sucrose exposures (8 times daily). Hydroxyapatite (n = 3) and bovine enamel (n = 3) substrata were included within each condition and samples extracted after 2, 4, 8, and 16 days. Community profiles were generated for fastidious anaerobes, Lactobacillus spp., Streptococcus spp., mutans streptococci (MS), and Veillonella spp. using selective culture techniques and enamel demineralisation assessed by transverse microradiography. Results demonstrated that the dCDFF model is able to produce caries-like enamel lesions with a high degree of sensitivity where reduced ionic strength within the FF condition increased surface layer mineral deposition. Between conditions, biofilm communities did not differ significantly, although MS in the biofilms extracted from the FF condition rose to a higher proportion (by 1.5 log10 units), and Veillonella spp. were initially greater within the CF condition (by 2.5 log10 units), indicating an enhanced ability for the clearance of low-pKa acids following exposures to sucrose. However, both conditions retained the ability for caries-like lesion formation.


2018 ◽  
pp. 47-52

Epimedium elatum (Morren & Decne) of family Berberidaceace is a rare perennial medicinal plant, endemic to high altitude forests of Northwestern Himalayas in India. Ethnobotanically, it has been used as an ingredient for treatment of bone-joint disorders, impotence and kidney disorders in Kashmir Himalayas. Phytochemically, it is rich in Epimedin ABC and Icariin; all of these have been demonstrated to possess remarkable biological activities like PDE-5 inhibition (treatment of erectile dysfunction), anticancer, antiosteoporosis antioxidant and antiviral properties. The present investigation reports its traditional usage, comprehensive distribution and conservation status from twenty ecogeographical regions in Kashmir Himalayas, India. The species was reported from Gurez valley for the first time. Numerous threats like excessive grazing, deforestration, habitat fragmentation, tourism encroachment, landslides and excessive exploitation have decreased its natural populations in most of the surveyed habitats. Consequently, its existence may become threatened in near future if timely conservation steps are not taken immediately by concerned stakeholders involved in medicinal plant research. Moreover, use of plant tissue culture techniques is recommended for development of its in vitro propagation protocols. Therefore, introduction of this medicinal plant in botanical gardens, protected sites and development of monitoring programmes are needed for its immediate conservation in Northwestern Himalayas, India.



Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.



2021 ◽  
Vol 22 (6) ◽  
pp. 3018
Author(s):  
Biane Philadelpho ◽  
Victória Souza ◽  
Fabiani Souza ◽  
Johnnie Santos ◽  
Fabiana Batista ◽  
...  

Adzuki seed β-vignin, a vicilin-like globulin, has proven to exert various health-promoting biological activities, notably in cardiovascular health. A simple scalable enrichment procedure of this protein for further nutritional and functional studies is crucial. In this study, a simplified chromatography-independent protein fractionation procedure has been optimized and described. The electrophoretic analysis showed a high degree of homogeneity of β-vignin isolate. Furthermore, the molecular features of the purified protein were investigated. The adzuki bean β-vignin was found to have a native size of 146 kDa, and the molecular weight determined was consistent with a trimeric structure. These were identified in two main polypeptide chains (masses of 56–54 kDa) that are glycosylated polypeptides with metal binding capacity, and one minor polypeptide chain with a mass 37 kDa, wherein these features are absent. The in vitro analysis showed a high degree of digestibility of the protein (92%) and potential anti-inflammatory capacity. The results lay the basis not only for further investigation of the health-promoting properties of the adzuki bean β-vignin protein, but also for a possible application as nutraceutical molecule.



Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 413
Author(s):  
Saad Saeed AlShahrani ◽  
Mana’a Saleh AlAbbas ◽  
Isadora Martini Garcia ◽  
Maha Ibrahim AlGhannam ◽  
Muath Abdulrahman AlRuwaili ◽  
...  

This review aimed to assess the antimicrobial effects of different antibacterial agents/compounds incorporated in resin-based dental sealants. Four databases (PubMed, MEDLINE, Web of Science and Scopus) were searched. From the 8052 records retrieved, 275 records were considered eligible for full-text screening. Nineteen studies met the inclusion criteria. Data extraction and quality assessment was performed by two independent reviewers. Six of the nineteen included studies were judged to have low risk of bias, and the rest had medium risk of bias. Compounds and particles such as zinc, tin, Selenium, chitosan, chlorhexidine, fluoride and methyl methacrylate were found to be effective in reducing the colony-forming unit counts, producing inhibition zones, reducing the optical density, reducing the metabolic activities, reducing the lactic acid and polysaccharide production and neutralizing the pH when they are added to the resin-based dental sealants. In addition, some studies showed that the antibacterial effect was not significantly different after 2 weeks, 2 months and 6 months aging in distilled water or phosphate-buffered saline. In conclusion, studies have confirmed the effectiveness of adding antibacterial agents/compounds to dental sealants. However, we should consider that these results are based on laboratory studies with a high degree of heterogeneity.



Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 635
Author(s):  
Ding Li ◽  
Menglong Wang ◽  
Wen-Liang Song ◽  
Deng-Guang Yu ◽  
Sim Wan Annie Bligh

A side-by-side electrospinning process characterized by a home-made eccentric spinneret was established to produce the Janus beads-on-a-string products. In this study, ketoprofen (KET) and methylene blue (MB) were used as model drugs, which loaded in Janus beads-on-a-string products, in which polyvinylpyrrolidone K90 (PVP K90) and ethyl cellulose (EC) were exploited as the polymer matrices. From SEM images, distinct nanofibers and microparticles in the Janus beads-on-a-string structures could be observed clearly. X-ray diffraction demonstrated that all crystalline drugs loaded in Janus beads-on-a-string products were transferred into the amorphous state. ATR-FTIR revealed that the components of prepared Janus nanostructures were compatibility. In vitro dissolution tests showed that Janus beads-on-a-string products could provide typical double drugs controlled-release profiles, which provided a faster immediate release of MB and a slower sustained release of KET than the electrospun Janus nanofibers. Drug releases from the Janus beads-on-a-string products were controlled through a combination of erosion mechanism (linear MB-PVP sides) and a typical Fickian diffusion mechanism (bead KET-EC sides). This work developed a brand-new approach for the preparation of the Janus beads-on-a-string nanostructures using side-by-side electrospinning, and also provided a fresh idea for double drugs controlled release and the potential combined therapy.



1976 ◽  
Vol 230 (4) ◽  
pp. 1037-1041 ◽  
Author(s):  
DR Strome ◽  
RL Clancy ◽  
NC Gonzalez

Isolated rabbit hearts were perfused with rabbit red cells suspended in Ringer solution. A small volume of perfusate was recirculated for 10 min at Pco2 of 33.4 +/- 0.9 or 150.8 +/- 7.5 mmHg. Hypercapnia resulted in an increase in perfusate HCO3- concentration that was smaller than that observed when isolated perfusate was equilibrated in vitro with the same CO2 tensions (delta HCO-3e = 1.6 mM, P less than 0.01). This difference is consistent with a net movement of HCO3- into or H+ out of the mycardial cell, and cannot be accounted for by dilution of HCO3- in the myocardial interstitium. Recirculation of perfusate through the coronary circulation at normal Pco2 for two consecutive 10-min periods was not followed by changes in perfusate HCO3- concentration. A high degree of correlation (r = 0.81) was observed between intracellular HCO-3e concentration and the corresponding delta HCO-3e in individual experiments. The results suggest that transmembrane exchange of H+ or HCO3- is a buffer mechanism for CO2 in the myocardial cell.



1997 ◽  
Vol 77 (3) ◽  
pp. 475-490 ◽  
Author(s):  
Klaus Schumann ◽  
Annette Lebeau ◽  
Ursula Gresser ◽  
Theodor Gunther ◽  
Jürgen Vormann

To investigate the mechanism of tissue Fe accumulation in graded Mg deficiency rats were fed on diets of different Mg contents (70, 110, 208, 330, and 850 mg Mg/kg) for 10, 20, and 30 d during rapid growth. There was no significant impact of Mg deficiency or high luminal Mg concentrations on intestinal59Fe transferin vitroorin vivo. Plasma Mg concentrations and body weight started to decrease after 10 d. Significant haemolytic anaemia was observed after 20 d with siderosis in liver and spleen developing in parallel. Anaemia showed no features of Fe deficiency or infiammation. Comparison between the 70 mg Mg/kg group and animals that received the same quantity of a Mg-adequate diet (850 mg Mg/kg) permitted estimation of quantities of Fe liberated by haemolysis and the increased Fe content in liver and spleen. Both variables showed a high degree of correlation, indicating that the excess of liberated haemoglobin Fe was stored in the tissue. The erythropoietic activity was high during rapid growth, i.e. at days 10 and 20 and decreased significantly after 30 d in all except the most Mg-deficient groups. However, haemolytic anaemia developed because even the high erythropoietic activity in the 70 and 110 mg Mg/kg groups was not sutlicient to recycle all haemoglobin Fe liberated by haemolysis. After 30 d of Mg-deficient feeding the erythrocyte Mg content had decreased to 40% of control values. According to the literature Mg-deficient erythrocytes have a decreased survival time which is likely to be the cause of the observed haemolysis.



Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 792
Author(s):  
Natalie Heinen ◽  
Mara Klöhn ◽  
Eike Steinmann ◽  
Stephanie Pfaender

SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially newly emerging coronaviruses, numerous pre-clinical cell culture techniques have progressively been used, which allow the study of SARS-CoV-2 pathogenesis, basic replication mechanisms, and drug efficiency in the most authentic context. Hence, this review was designed to summarize and discuss currently used in vitro and ex vivo cell culture systems and will illustrate how these systems will help us to face the challenges imposed by the current SARS-CoV-2 pandemic.



PEDIATRICS ◽  
1964 ◽  
Vol 34 (5) ◽  
pp. 705-707
Author(s):  
WILLIAM D. DONALD

In vitro sensitivities of 70 shigella strains isolated over a recent 18-month period are reported. The high degree of sulfadiazine resistance casts some doubt on the selection of this agent as the drug of choice in the treatment of shigellosis, at least in this community. Some of the other agents, although inhibiting the growth of the organisms in vitro, have disadvantages such as toxicity or failure of absorption from the gastrointestinal tract. Tetracycline resistance was found in only 7% of the organisms tested, but from this and other reports we may anticipate the occurrence of more organisms resistant to this agent. The results of the sensitivities to ampicillin are encouraging and further studies including clinical trials of this agent are in order.



Sign in / Sign up

Export Citation Format

Share Document