scholarly journals Acute Lymphoblastic Leukemia Presenting as Fanconi Syndrome

2018 ◽  
Vol 11 (1) ◽  
pp. 63-67
Author(s):  
Tatsunori Yoshida ◽  
Hiroshi Tsujimoto ◽  
Takayuki Ichikawa ◽  
Shinji Kounami ◽  
Hiroyuki Suzuki

Acute lymphoblastic leukemia (ALL) presenting as Fanconi syndrome (FS) is extremely rare. Here, we report a case of ALL presenting as bilateral nephromegaly following FS. A 2-year-old girl was unexpectedly diagnosed with bilateral nephromegaly. After 2 weeks, she developed general fatigue, thirst, and polyuria. Laboratory examinations revealed renal tubular acidosis, hypokalemia, hypophosphatemia, and aminoaciduria, and FS was diagnosed. Replacement of bicarbonate and potassium did not improve her condition. Two weeks after the onset of FS, leukemic cells appeared on a peripheral blood smear, and the patient was diagnosed with precursor B-cell ALL presenting as nephromegaly and FS. Chemotherapy brought about a prompt resolution of acidosis and electrolyte abnormalities, without renal dysfunction. The patient remains well 4 years after the onset of the disease. Although extremely rare, FS should be recognized as one of the emerging renal complications of ALL.

2021 ◽  
pp. 72-74
Author(s):  
Sarat Das ◽  
Prasanta Kr. Baruah ◽  
Sandeep Khakhlari ◽  
Gautam Boro

Introduction: Leukemias are neoplastic proliferations of haematopoietic stem cells and form a major proportion of haematopoietic neoplasms that are diagnosed worldwide. Typing of leukemia is essential for effective therapy because prognosis and survival rate are different for each type and sub-type Aims: this study was carried out to determine the frequency of acute and chronic leukemias and to evaluate their clinicopathological features. Methods: It was a hospital based cross sectional study of 60 patients carried out in the department of Pathology, JMCH, Assam over a period of one year between February 2018 and January 2019. Diagnosis was based on peripheral blood count, peripheral blood smear and bone marrow examination (as on when available marrow sample) for morphology along with cytochemical study whenever possible. Results: In the present study, commonest leukemia was Acute myeloid leukemia (AML, 50%) followed by Acute lymphoblastic leukemia (ALL 26.6%), chronic myeloid leukemia (CML, 16.7%) and chronic lymphocytic leukemia (CLL, 6.7%). Out of total 60 cases, 36 were male and 24 were female with Male:Female ratio of 1.5:1. Acute lymphoblastic leukemia was the most common type of leukemia in the children and adolescents. Acute Myeloid leukemia was more prevalent in adults. Peripheral blood smear and bone Conclusion: marrow aspiration study still remains the important tool along with cytochemistry, immunophenotyping and cytogenetic study in the diagnosis and management of leukemia.


Blood ◽  
1978 ◽  
Vol 52 (4) ◽  
pp. 712-718 ◽  
Author(s):  
SD Smith ◽  
EM Uyeki ◽  
JT Lowman

Abstract An assay system in vitro for the growth of malignant lymphoblastic colony-forming cells (CFC) was established. Growth of malignant myeloblastic CFC has been previously reported, but this is the first report of growth of malignant lymphoblastic CFC. Established assay systems in vitro have been very helpful in elucidating the control of growth and differentiation of both normal and malignant bone marrow cells. Lymphoblastic CFC were grown from the bone marrow aspirates of 20 children with acute lymphoblastic leukemia. Growth of these colonies was established on an agar assay system and maintained in the relative hypoxia (7% oxygen) of a Stulberg chamber. The criteria for malignancy of these colonies was based upon cellular cytochemical staining characteristics, the presence of specific cell surface markers, and the ability of these lymphoid cells to grow without the addition of a lymphoid mitogen. With this technique, specific nutritional requirements and drug sensitivities can be established in vitro, and these data may permit tailoring of individual antileukemic therapy.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 214
Author(s):  
Željko Antić ◽  
Stefan H. Lelieveld ◽  
Cédric G. van der Ham ◽  
Edwin Sonneveld ◽  
Peter M. Hoogerbrugge ◽  
...  

Pediatric acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and is characterized by clonal heterogeneity. Genomic mutations can increase proliferative potential of leukemic cells and cause treatment resistance. However, mechanisms driving mutagenesis and clonal diversification in ALL are not fully understood. In this proof of principle study, we performed whole genome sequencing of two cases with multiple relapses in order to investigate whether groups of mutations separated in time show distinct mutational signatures. Based on mutation allele frequencies at diagnosis and subsequent relapses, we clustered mutations into groups and performed cluster-specific mutational profile analysis and de novo signature extraction. In patient 1, who experienced two relapses, the analysis unraveled a continuous interplay of aberrant activation induced cytidine deaminase (AID)/apolipoprotein B editing complex (APOBEC) activity. The associated signatures SBS2 and SBS13 were present already at diagnosis, and although emerging mutations were lost in later relapses, the process remained active throughout disease evolution. Patient 2 had three relapses. We identified episodic mutational processes at diagnosis and first relapse leading to mutations resembling ultraviolet light-driven DNA damage, and thiopurine-associated damage at first relapse. In conclusion, our data shows that investigation of mutational processes in clusters separated in time may aid in understanding the mutational mechanisms and discovery of underlying causes.


Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1355-1359 ◽  
Author(s):  
MX Zhou ◽  
HW Jr Findley ◽  
AH Ragab

Abstract We are reporting here that low-mol wt B-cell growth factor (LMW-BCGF) and recombinant interleukin-2 (rIL-2) are together able to induce CD3+ cytotoxic T lymphocytes (CTL) with lymphokine-activated killer cell (LAK) activity from the bone marrow (BM) cells of children with acute lymphoblastic leukemia (ALL). Ficoll-Hypaque (FH)-separated BM cells were obtained from patients with active disease (at diagnosis N = 13, in relapse N = 15) and in complete remission (CR; N = 12). CD3+ cells were removed by Leu-4 antibody and immunobeads. Cells were cultured (10(5) cells/mL) in semisolid media with rIL-2 (100 mu/mL), LMW-BCGF (0.1 mu/mL), and the combination of rIL-2 plus LMW-BCGF, respectively, for seven to ten days. Pooled colonies were harvested for phenotyping. LMW-BCGF plus rIL-2 induced large numbers of CD3+ colonies from CD3- precursors. rIL-2 alone did not induce colony formation. In addition, cells were cultured in liquid media with LMW-BCGF, rIL-2, and the combination of LMW-BCGF plus rIL-2, respectively, for seven to 21 days. They were harvested for phenotyping, and cytotoxicity assays were performed v K562, Raji, and autologous leukemic cells. LMW-BCGF plus rIL-2 induced significant expansion of CD3+ cells from CD3- precursors, and these cells were activated to kill autologous leukemic cells in addition to Raji and K562 cell lines. LMW-BCGF or rIL-2 alone did not induce significant expansion or activation of cytotoxic CD3- cells. Our hypothesis is that LMW-BCGF plus rIL-2 stimulates the proliferation and activation of CD3- precursors from the BM cells of children with acute leukemia to become CD3+ cells that have LAK activity. This finding may have therapeutic implications.


2021 ◽  
Vol 22 (3) ◽  
pp. 1388
Author(s):  
Natalia Maćkowska ◽  
Monika Drobna-Śledzińska ◽  
Michał Witt ◽  
Małgorzata Dawidowska

Distinct DNA methylation signatures, related to different prognosis, have been observed across many cancers, including T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological neoplasm. By global methylation analysis, two major phenotypes might be observed in T-ALL: hypermethylation related to better outcome and hypomethylation, which is a candidate marker of poor prognosis. Moreover, DNA methylation holds more than a clinical meaning. It reflects the replicative history of leukemic cells and most likely different mechanisms underlying leukemia development in these T-ALL subtypes. The elucidation of the mechanisms and aberrations specific to (epi-)genomic subtypes might pave the way towards predictive diagnostics and precision medicine in T-ALL. We present the current state of knowledge on the role of DNA methylation in T-ALL. We describe the involvement of DNA methylation in normal hematopoiesis and T-cell development, focusing on epigenetic aberrations contributing to this leukemia. We further review the research investigating distinct methylation phenotypes in T-ALL, related to different outcomes, pointing to the most recent research aimed to unravel the biological mechanisms behind differential methylation. We highlight how technological advancements facilitated broadening the perspective of the investigation into DNA methylation and how this has changed our understanding of the roles of this epigenetic modification in T-ALL.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3417-3423 ◽  
Author(s):  
Marina Bousquet ◽  
Cyril Broccardo ◽  
Cathy Quelen ◽  
Fabienne Meggetto ◽  
Emilienne Kuhlein ◽  
...  

Abstract We report a novel t(7;9)(q11;p13) translocation in 2 patients with B-cell acute lymphoblastic leukemia (B-ALL). By fluorescent in situ hybridization and 3′ rapid amplification of cDNA ends, we showed that the paired box domain of PAX5 was fused with the elastin (ELN) gene. After cloning the full-length cDNA of the chimeric gene, confocal microscopy of transfected NIH3T3 cells and Burkitt lymphoma cells (DG75) demonstrated that PAX5-ELN was localized in the nucleus. Chromatin immunoprecipitation clearly indicated that PAX5-ELN retained the capability to bind CD19 and BLK promoter sequences. To analyze the functions of the chimeric protein, HeLa cells were cotransfected with a luc-CD19 construct, pcDNA3-PAX5, and with increasing amounts of pcDNA3-PAX5-ELN. Thus, in vitro, PAX5-ELN was able to block CD19 transcription. Furthermore, real-time quantitative polymerase chain reaction (RQ-PCR) experiments showed that PAX5-ELN was able to affect the transcription of endogenous PAX5 target genes. Since PAX5 is essential for B-cell differentiation, this translocation may account for the blockage of leukemic cells at the pre–B-cell stage. The mechanism involved in this process appears to be, at least in part, through a dominant-negative effect of PAX5-ELN on the wild-type PAX5 in a setting ofPAX5 haploinsufficiency.


Sign in / Sign up

Export Citation Format

Share Document