scholarly journals PRMT1 Promoted HCC Growth and Metastasis In Vitro and In Vivo via Activating the STAT3 Signalling Pathway

2018 ◽  
Vol 47 (4) ◽  
pp. 1643-1654 ◽  
Author(s):  
Xiu-Ping Zhang ◽  
Ya-Bo Jiang ◽  
Cheng-Qian Zhong ◽  
Ning Ma ◽  
Er-Bin Zhang ◽  
...  

Background/Aims: Although it has been widely accepted that protein arginine methyltransferase 1 (PRMT1) is a cancer-promoting gene in various cancers, the mechanism of PRMT1 in hepatocellular carcinoma (HCC) requires more exploration. This study aimed to investigate the role of PRMT1 in HCC growth and metastasis. Methods: We compared PRMT1 expression and clinicopathological characteristics using paired HCC and adjacent noncancerous liver tissues from 210 patients and immunohistochemistry analyses. Cell proliferation, colony formation and migration were determined in HCC cell lines with PRMT1 overexpression or downregulation through MTT, crystal violet and Boyden chamber assays. Tumour growth was monitored in a xenograft model, and intrahepatic metastasis models were established. Results: PRMT1 expression was greatly increased in clinical HCC samples and strongly associated with poor prognosis and recurrence; PRMT1 expression was also positively correlated with microvascular invasion (P = 0.024), tumour differentiation (P = 0.014), tumour size (P = 0.002), and portal vein tumour thrombus (PVTT) (P = 0.028). Cell proliferation, colony formation and migration in vitro were enhanced by PRMT1 upregulation and decreased by PRMT1 downregulation in HCC cell lines. Moreover, low PRMT1 expression resulted in slow tumour growth and decreased tumour weight in vivo, as well as tumour metastasis. These phenotypes were associated with STAT3 signalling pathway activation. Cryptotanshinone, a STAT3 inhibitor, inhibited STAT3 phosphorylation and reversed the HCC phenotype of PRMT1 expression. Conclusions: We revealed a significant role for PRMT1 in HCC progression and metastasis in vitro and in vivo via STAT3 signalling pathway activation. PRMT1 may be a potential novel prognostic biomarker and new therapeutic target for HCC.

2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 323-323
Author(s):  
Khac Cuong Bui ◽  
Mai Ly Thi Nguyen ◽  
Samarpita Barat ◽  
Xi Chen ◽  
Vikas Bhuria ◽  
...  

323 Background: Adiponectin is the key adipokine, which plays an important role in health and disease such as obesity, diabetes, and cancer. Adiponectin is reduced in different tumor types, especially in obesity-related cancer, and recent studies showed that Adiponectin had a potential anti-cancer effect. Obesity is a risk factor for various tumor diseases including cholangiocarcinoma (CC), the second most common primary hepatic cancer. The aim of this study is to investigate for the first time the anti-cancer effect of AdipoR agonist in CC cell lines and a CC engineered mouse model. Methods: Human CC cell lines (TFK-1 and SZ-1) and CC engineered mice (Alb-Cre/KRASG12D/p53L/L) were used to investigate the anti-cancer effects of an AdipoR agonist (2-(4-Benzoylphenoxy)-N-[1-(phenylmethyl)-4-piperidinyl]-acetamide). Cell proliferation, migration, invasion, colony formation, apoptosis assay were applied to evaluate the effect of AdipoR agonist in vitro. In addition, important cancer signalling pathways and targets were analysed by Western Blot. Mice (n = 12) were treated with AdipoR or verhicle and tumor burden and survival were monitored. Results: AdipoR agonist suppressed proliferation, migration, invasion, colony formation and apoptosis in CC cells. AdipoR agonist regulated the expression of different proteins such as EMT markers, pAMPK, pSTAT3, and PARP, which have pivotal functions in cholangiocarcinogenesis. AdipoR agonist also prolonged survival time in a CC engineered mouse model. Conclusions: Our data revealed that AdipoR agonist inhibited successfully cell proliferation, migration, invasion, colony formation and apoptosis in vitro, and prolonged mice survival in vivo through regulation of crucial signaling pathways in cholangiocarcinogenesis. These results suggested that AdipoR agonist might become a new potential candidate for CC treatment in the future.


2020 ◽  
Author(s):  
Lin Hu ◽  
Jing Wang ◽  
Yunliang Wang ◽  
Linpeng Wu ◽  
Chao Wu ◽  
...  

Abstract Background: LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods: LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blotting and real-time PCR. In vitro , colony formation, wound healing, migration and invasion assays were performed to investigate the effects of LOXL1 on cell proliferation, migration and invasion. In vivo , metastasis models and mouse xenografts were used to assess tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms by which LOXL1 modulates the Hippo pathway. Results: LOXL1 was highly expressed in normal colon tissues compared with cancer tissues. In vitro, silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 exerted the opposite effects. The results of the in vivo experiments demonstrated that the overexpression of LOXL1 in CRC cell lines drastically inhibited metastatic progression and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) by interacting with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions: LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulation of YAP activity.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Lin Hu ◽  
Jing Wang ◽  
Yunliang Wang ◽  
Linpeng Wu ◽  
Chao Wu ◽  
...  

Abstract Background LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blotting and real-time PCR. In vitro, colony formation, wound healing, migration and invasion assays were performed to investigate the effects of LOXL1 on cell proliferation, migration and invasion. In vivo, metastasis models and mouse xenografts were used to assess tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms by which LOXL1 modulates the Hippo pathway. Results LOXL1 was highly expressed in normal colon tissues compared with cancer tissues. In vitro, silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 exerted the opposite effects. The results of the in vivo experiments demonstrated that the overexpression of LOXL1 in CRC cell lines drastically inhibited metastatic progression and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) by interacting with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulation of YAP activity. Graphical abstract


Author(s):  
Jun-Jie Hu ◽  
Cui Zhou ◽  
Xin Luo ◽  
Sheng-Zheng Luo ◽  
Zheng-Hong Li ◽  
...  

Abstract Background Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) have regulatory functions in hepatocellular carcinoma (HCC). The link between lincSCRG1 and HCC remains unclear. Methods To explore the lincSCRG1 regulation axis, bioinformatics, RIP and luciferase reporter assay were performed. The expressions of lincSCRG1-miR26a-SKP2 were detected in HCC tissues and cell lines through qPCR and western blot. The functions of HCC cells were investigated through in vitro assays (MTT, colony formation, transwell and flow cytometry) and the inner effect of lincSCRG1-miR26a in vivo was evaluated by xenografts and liver metatstatic nude mice models. Results LincSCRG1 was found to be strongly elevated in human HCC tissues and cell lines. MiR26a and S phase kinase-related protein 2 (SKP2) were predicted as the target miRNA for lincSCRG1 and the target gene for miR26a with direct binding sites, respectively. LincSCRG1 was verified as a competing endogenous RNA (ceRNA) via negative regulation of miR26a and derepression of SKP2 in HCC cells. Both overexpression of lincSCRG1 (ov-lincSCRG1) and inhibition of miR26a (in-miR26a) obviously stimulated cellular viability, colony formation, migration and proliferation of S phase cells and also significantly increased the protein levels of cyclinD1, CDK4, MMP2/3/9, Vimentin, and N-cadherin or inhibited the protein level of E-cadherin of HCC cells, while knockdown of lincSCRG1 (sh-lincSCRG1) and upregulation of miR26a (mi-miR26a) had the opposite effects on HCC cells. Cotransfection of in-miR26a or overexpression of SKP2 (ov-SKP2) with sh-lincSCRG1 could rescue the anticancer functions of sh-lincSCRG1, including suppressing proliferation and migration of HCC cells. Additionally, sh-lincSCRG1 could effectively inhibit the growth of subcutaneous xenograft tumours and lung metastasis, while the anticancer effect of sh-lincSCRG1 could be reversed by cotransfection of in-miR26a. Conclusions LincSCRG1 acts as a ceRNA of miR26a to restrict its ability to derepress SKP2, thereby inducing the proliferation and migration of HCC cells in vitro and in vivo. Depletion of lincSCRG1 could be used as a potential therapeutic approach in HCC.


2020 ◽  
Author(s):  
Lin Hu ◽  
Jing Wang ◽  
Yunliang Wang ◽  
Linpeng Wu ◽  
Chao Wu ◽  
...  

Abstract Background LOX-like 1 (LOXL1), as a lysyl oxidase, emerging evidences revealed the effect in cancer malignant progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blot and real-time PCR. In vitro , colony formation assay, wound healing assay, migration and invasion experiment were performed to investigate the effects of LOXL1 in cell proliferation, migration and invasion, respectively. In vivo , metastasis models and mouse xenograft were used to determine tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms of LOXL1 modulating Hippo pathway. Results LOXL1 is highly expressed in normal colon tissues compared with cancer tissues. In vitro, Silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 manifested the opposite effects. Results of the in vivo experiments demonstrated that the enforced expression of LOXL1 in CRC cell lines had drastically inhibited the progression of metastasis and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) was through interaction with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulating of YAP activity.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Pan Xu ◽  
Aoran Luo ◽  
Chuan Xiong ◽  
Hong Ren ◽  
Liang Yan ◽  
...  

Abstract Objectives We aimed to verify the role of signal peptide-CUB-EGF-like domain-containing protein3 (SCUBE3) in the hepatocellular carcinoma (HCC) progression. Methods The role of SCUBE3 in HCC cell proliferation, apoptosis, and cell cycle in vitro were detected using MTT assay, colony formation assay, 5-ethynyl-2´-deoxyuridine assay (EDU), Celigo cell counting assay, Caspase3/7 activity assay, and flow cytometry. The effect of SCUBE3 on HCC cell proliferation in vivo was inspected by a xenograft tumour model in nude mice. The related mechanisms were further studied. Results The level of SCUBE3 was upregulated in HCC tissues and cell lines. Knockdown of SCUBE3 inhibited proliferation, promoted apoptosis, and induced cell cycle arrest in HCC cell lines in vitro and in vivo. Screening of cell cycle-related proteins revealed that CCNL2, CDK6, CCNE1, and CCND1 exhibited a significantly different expression profile. We found that SCUBE3 may promote the proliferation of HCC cells by regulating CCNE1 expression. The pathway enrichment analysis showed that the TGFβ signalling pathway and the PI3K/AKT signalling pathway were significantly altered. Co-immunoprecipitation results showed that SCUBE3 binds to the TGFβRII receptor. SCUBE3 knockdown inhibited the PI3K/AKT signalling pathway and the phosphorylation of GSK3β to inhibit its kinase activity. Conclusions SCUBE3 promotes HCC development by regulating CCNE1 via TGFβ/PI3K/AKT/GSK3β pathway. In addition, SCUBE3 may be a new molecular target for the clinical diagnosis and treatment of HCC.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1870
Author(s):  
Klaudia Skrzypek ◽  
Grażyna Adamek ◽  
Marta Kot ◽  
Bogna Badyra ◽  
Marcin Majka

Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii101-ii101
Author(s):  
Christoph Kesseler ◽  
Julian Kahr ◽  
Natalie Waldt ◽  
Nele Stroscher ◽  
Josephine Liebig ◽  
...  

Abstract PURPOSE To evaluate the role of the small GTPases RhoA, Rac1 and Cdc42 in meningiomas as therapeutic targets and their interactions in meningiomas. EXPERIMENTAL DESIGN We analyzed expression of GTPases in human meningioma samples and meningioma cell lines of various WHO grades. Malignant IOMM-Lee meningioma cells were used to generate shRNA mediated knockdowns of GTPases RhoA, Rac1 or Cdc42 and to study knockdown effects on proliferation and migration, as well as analysis of cell morphology by confocal microscopy. The same tests were used to investigate effects of the two inhibitors Fasudil and EHT-1864 of malignant IOMM-Lee, KT21 and benign Ben-Men cells and the effects of these drugs on IOMM-Lee knockdown cells. The effects of GTPase knockdowns and Fasudil treatment were studied in terms of overall survival by intracranial xenografts of mice. Potential interactions of GTPases regarding NF2, mTOR and FAK-Paxillin were examined. RESULTS Small GTPases were upregulated in meningiomas of higher tumor grades. Reduced proliferation and migration could be achieved by GTPase knockdown in IOMM-Lee cells. Additionally, the ROCK-inhibitor Fasudil and Rac1-inhibitor EHT-1864 reduced proliferation in different meningioma cell lines and reduced proliferation and migration independent of GTPase knockdowns/status. Moreover, overall survival in vivo could also be increased by knockdowns of RhoA and Rac1 as well as Fasudil treatment. GTPase expression was affected dependent on the NF2 status but effects were not very distinct, indicating that NF2 is not strongly involved in GTPase regulation in meningiomas. In terms of mTOR and FAK-Paxillin signaling, each GTPase changes those pathways in a different manner. CONCLUSION Small GTPases are important effectors in meningioma proliferation and migration in vitro as well as survival in vivo and their inhibition should be considered as potential treatment option.


Sign in / Sign up

Export Citation Format

Share Document