scholarly journals Propofol Inhibits Proliferation, Migration, Invasion and Promotes Apoptosis Through Down-Regulating miR-374a in Hepatocarcinoma Cell Lines

2018 ◽  
Vol 49 (6) ◽  
pp. 2099-2110 ◽  
Author(s):  
Sheng-Qun Liu ◽  
Jing-Liang Zhang ◽  
Zhan-Wen Li ◽  
Zhen-Hua Hu ◽  
Zhe Liu ◽  
...  

Background: Propofol is a commonly used anaesthetic with controversial effects on cancer cells. We aimed to explore the functional roles of propofol in hepatocellular carcinoma (HCC) cells as well as the underlying mechanisms. Methods: HepG2 and SMMC-7721 cells were used in this study. Firstly, the effects of propofol on cell viability, migration, invasion, apoptosis, and involved proteins were assessed by Cell Counting Kit-8 assay, Transwell assay, flow cytometry assay and Western blot analysis, respectively. Subsequently, alteration of miR-374a after stimulation of propofol was analyzed by qRT-PCR. miR-374a was overexpressed and the alteration of proteins in the Wnt/β-catenin and PI3K/AKT pathways was detected by Western blot analysis. The downstream factor of miR-374a was finally studied. Results: Propofol inhibited cell viability, migration and invasion but promoted apoptosis of HepG2 and SMMC-7721 cells. Meanwhile, cyclinD1, matrix metalloproteinase (MMP)-2 and MMP-9 were down-regulated while Bax/Bcl-2, cleaved caspase-3 and cleaved caspase-9 were up-regulated by propofol. Then, miR-374a level was reduced by propofol. Expression of Wnt3a, β-catenin, p-PI3K and p-AKT was decreased by propofol, whereas these decreases were reversed by miR-374a overexpression. Finally, TP53 was proven to be target of miR-374a in HepG2 cells. Conclusion: Propofol inhibited cell proliferation, migration and invasion while promoted cell apoptosis of HepG2 and SMMC-7721 cells through inhibiting the Wnt/β-catenin and PI3K/ AKT pathways via down-regulation of miR-374a. Besides, miR-374a affected propofol-treated HepG2 cells by targeting TP53.

2021 ◽  
Vol 12 ◽  
Author(s):  
Daowei Zhang ◽  
Jiawen Wu ◽  
Jihong Wu ◽  
Shenghai Zhang

Background: Retinal photoreceptor (RP) cells are widely involved in retina-related diseases, and oxidative stress plays a critical role in retinal secondary damage. Herein, we investigated the effectiveness and potential mechanisms of autophagy of paeonol (Pae) in terms of oxidation resistance.Methods: The animal model was induced by light damage (LD) in vivo, whereas the in vitro model was established by H2O2 stimulation. The effectiveness of Pae was evaluated by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, immunofluorescence, transmission electron microscopy, electroretinogram, and Western blot analysis in vivo, and the underlying mechanisms of Pae were assessed by Cell Counting Kit-8 assay, reactive oxygen species (ROS) assay, and Western blot analysis in 661W cells. We mainly evaluated the effects of Pae on apoptosis and autophagy.Results: Increased apoptosis of the LD-induced and decreased autophagy of RPs were mitigated by Pae treatment. Pea, which increased the expression of mitochondrial functional protein cytochrome c, reversed the decreased cell viability and autophagy induced by oxidative stress in 661W cells. Experiments showed that autophagy was downregulated in PINK1/Parkin dependent and the BNIP3L/Nix dependent pathways under H2O2 stimulation and was upregulated by Pae treatment. Pae increased the cell viability and reduced ROS levels through autophagy.Conclusion: Pretreatment with Pae preserved RP cells by enhancing autophagy, which protected retinal function.


2018 ◽  
Vol 49 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Huibin Lu ◽  
Tian Jiang ◽  
Kewei Ren ◽  
Zongming Li Li ◽  
Jianzhuang Ren ◽  
...  

Background/Aims: Esophageal carcinoma is a frequently occurring cancer at upper gastrointestinal tract. We aimed to evaluate the roles and possible mechanism of Runt Related Transcription Factor 2 (RUNX2) in the development of esophageal cancer. Methods: The expression of RUNX2 in esophageal carcinoma tissues and cells was investigated by qRT-PCR. Effects of RUNX2 on cell viability, apoptosis, migration and invasion were assessed using MTT assay, flow cytometry assay/western blot analysis, and Transwell assays, respectively. Afterwards, effects of RUNX2 on of the activation of the PI3K/AKT and ERK pathways were explored by Western blot analysis. In addition, a PI3K/AKT pathway inhibitor LY294002 and an ERK inhibitor U0126 were applied to further verify the regulatory relationship between RUNX2 and the PI3K/AKT and ERK signaling pathways. Besides, the RUNX2 function on tumor formation in vivo was investigated by tumor xenograft experiment. Results: The result showed that RUNX2 was highly expressed in esophageal carcinoma tissues and cells. Knockdown of RUNX2 significantly inhibited TE-1 and EC-109 cell viability, repressed TE-1 cell migration and invasion, and increased TE-1 cell apoptosis. RUNX2 overexpression showed the opposite effects on HET-1A cells. Moreover, RUNX2-mediated TE-1 cell viability, migration and invasion were associated with the activation of the PI3K/AKT and ERK pathways. Besides, knockdown of RUNX2 markedly suppressed tumor formation in vivo. Conclusion: Our results indicate that RUNX2 may play an oncogenic role in esophageal carcinoma by activating the PI3K/ AKT and ERK pathways. RUNX2 may serve as a potent target for the treatment of esophageal carcinoma.


2020 ◽  
Vol 20 (9) ◽  
pp. 1147-1156
Author(s):  
Hanrui Li ◽  
GeTao Du ◽  
Lu Yang ◽  
Liaojun Pang ◽  
Yonghua Zhan

Background: Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma. Objective: Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin. Methods: BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size. Results: The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment. Conclusion: A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.


2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


2021 ◽  
Vol 22 (16) ◽  
pp. 8847
Author(s):  
Fangfang Tie ◽  
Jin Ding ◽  
Na Hu ◽  
Qi Dong ◽  
Zhi Chen ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases which lacks ideal treatment options. Kaempferol and kaempferide, two natural flavonol compounds isolated from Hippophae rhamnoides L., were reported to exhibit a strong regulatory effect on lipid metabolism, for which the mechanism is largely unknown. In the present study, we investigated the effects of kaempferol and kaempferide on oleic acid (OA)-treated HepG2 cells, a widely used in vitro model of NAFLD. The results indicated an increased accumulation of lipid droplets and triacylglycerol (TG) by OA, which was attenuated by kaempferol and kaempferide (5, 10 and 20 μM). Western blot analysis demonstrated that kaempferol and kaempferide reduced expression of lipogenesis-related proteins, including sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD-1). Expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding proteins β (C/EBPβ), two adipogenic transcription factors, was also decreased by kaempferol and kaempferide treatment. In addition, western blot analysis also demonstrated that kaempferol and kaempferide reduced expression of heme oxygenase-1 (HO-1) and nuclear transcription factor-erythroid 2-related factor 2 (Nrf2). Molecular docking was performed to identify the direct molecular targets of kaempferol and kaempferide, and their binding to SCD-1, a critical regulator in lipid metabolism, was revealed. Taken together, our findings demonstrate that kaempferol and kaempferide could attenuate OA-induced lipid accumulation and oxidative stress in HepG2 cells, which might benefit the treatment of NAFLD.


2018 ◽  
Vol 32 ◽  
pp. 205873841879594 ◽  
Author(s):  
Hui Dong ◽  
Wei Jiang ◽  
Hongquan Chen ◽  
Shui Jiang ◽  
Yunshu Zang ◽  
...  

MicroRNAs (miRNAs/miRs) play vital roles in various immune diseases including systemic lupus erythematosus (SLE). The current study aimed to assess the role of miR-145 in interleukin-6 (IL-6)-treated HaCaT cells under ultraviolet B (UVB) irradiation and further explore the potential regulatory mechanism. HaCaT cells were pretreated with IL-6 and then exposed to UVB to assess the effect of IL-6 on sensitivity of HaCaT cells to UVB irradiation. The levels of miR-145 and MyD88 were altered by transfection and the transfected efficiency was verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR)/western blot analysis. Cell viability, percentage of apoptotic cells and expression levels of apoptosis-related factors were measured by trypan blue assay, flow cytometry assay, and western blot analysis, respectively. In addition, the levels of c-Jun N-terminal kinases (JNK) and nuclear factor-κB (NF-κB) signaling pathway-related factors were assessed by western blot analysis. IL-6 treatments significantly aggravated the reduction of cell viability and promotion of cell apoptosis caused by UVB irradiation in HaCaT cells. Interestingly, miR-145 level was augmented by UVB exposure and miR-145 mimic alleviated IL-6-induced increase of sensitivity to UVB irradiation in HaCaT cells, as dramatically increased cell viability and reduced cell apoptosis. Opposite effects were observed in miR-145 inhibitor-transfected cells. Meanwhile, MyD88 was negatively regulated by miR-145 and MyD88 mediated the regulatory effect of miR-145 on IL-6- and UVB-treated cells. In addition, miR-145 mimic inhibited the JNK and NF-κB pathways by down-regulating MyD88. In conclusion, the present study demonstrated that miR-145 alleviated IL-6-induced increase of sensitivity to UVB irradiation by down-regulating MyD88 in HaCaT cells.


2018 ◽  
Vol 47 (5) ◽  
pp. 1871-1882 ◽  
Author(s):  
Wei-Qiang Jia ◽  
Zhao-Tao Wang ◽  
Ming-Ming Zou ◽  
Jian-Hao Lin ◽  
Ye-Hai Li ◽  
...  

Background/Aims: As a natural antioxidant, verbascoside (VB) is proved to be a promising method for the treatment of oxidative-stress-related neurodegenerative diseases. Thus, this study aimed to investigate the effects of VB on glioblastoma cell proliferation, apoptosis, migration, and invasion as well as the mechanism involving signal transducer and activator of transcription 3 (STAT3) and Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1). Methods: U87 cells were assigned to different treatments. The MTT assay was used to test cell proliferation, flow cytometry was used to detect cell apoptosis, and a Transwell assay was used for cell migration and invasion. We analyzed the glioblastoma tumor growth in a xenograft mouse model. Western blot analysis was employed to determine the protein expression of related genes. Results: Glioblastoma cells exhibited decreased cell proliferation, migration, invasion, and increased apoptosis when treated with VB or TMZ. Western blot analysis revealed elevated SHP-1 expression and reduced phosphorylated (p)-STAT3 expression in glioblastoma cells treated with VB compared with controls. Correspondingly, in a xenograft mouse model treated with VB, glioblastoma tumor volume and growth were decreased. Glioblastoma xenograft tumors treated with VB showed elevated SHP-1, Bax, cleaved caspase-3, and cleaved PARP expression and reduced p-STAT3, Bcl-2, survivin, MMP-2, and MMP-9 expression. siRNA-SHP-1 inhibited the VB effects on glioblastoma. Conclusion: This study demonstrates that VB inhibits glioblastoma cell proliferation, migration, and invasion while promoting apoptosis via SHP-1 activation and inhibition of STAT3 phosphorylation.


2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 216-216
Author(s):  
J. G. Trevino ◽  
S. R. Pillai ◽  
S. P. Chellappan

216 Background: The signaling pathways contributing to DNA-binding protein inhibitor Id1 expression and chemoresistance in pancreatic cancer remain unknown. Id1 plays a role in pancreatic tumor progression with tumor-promoting effects of nicotine regulating protein tyrosine kinase Src activation and Id1 expression, both associated with chemoresistance in other systems. We hypothesize Id1 expression regulates chemoresistance in pancreatic cancer through a nicotine-promoting Src-dependent pathway. Methods: We probed pancreatic cancer cell lines (L3.6pl, PANC-1, Mia-PaCa-2) for innate gemcitabine chemoresistance with cell viability MTT assay and western blot analysis of PARP cleavage programmed cell death. Gemcitabine-sensitive cells were exposed to rising gemcitabine concentrations to establish a resistant subtype, L3.6plGemRes. Protein analysis and mRNA expression were determined by western blot analysis and RT-PCR respectively. Induction of Src phosphorylation or Id1 expression was performed with nicotine (1 μM). Results: Inhibition of c-Src expression was performed with short-interfering RNA (siRNA). Nicotine-induced Src phosphorylation and Id1 expression. Inhibition of Src by siRNA resulted in decreased nicotine-induced Id1 expression. Inhibition of Src and Id1 expression by siRNA in innate or established gemcitabine resistant pancreatic cancer cells resulted in gemcitabine sensitization. To determine if nicotine contributes to gemcitabine chemoresistance, we exposed gemcitabine-sensitive cells to nicotine with subsequent exposure to gemcitabine IC50, 250 ng/ml, and cell viability assays confirmed a 2-fold increase in cell prolilferation and a 4.5-fold reduction in apoptosis. Further, nicotine induced phosphorylation of key signaling enzymes involved in proliferation and apoptosis, Erk1/2 and Akt respectively. Conclusions: In summary, we demonstrate that Id1, through a nicotine-promoting Src-dependent pathway, is necessary for establishment of a chemoresistant phenotype in pancreatic cancer cells. Understanding the signaling pathways involved in pancreatic tumor chemoresistance will lead to therapies resulting in improved tumor responses. No significant financial relationships to disclose.


2021 ◽  
Author(s):  
Yue Li ◽  
Mingxu Fu ◽  
Ling Guo ◽  
Xiaoxiao Sun ◽  
Yuhang Chen ◽  
...  

Abstract Background: Metastases and recurrence of ovarian cancer after surgery and chemotherapy account for most cancer-related deaths, yet the mechanism underlying metastases and recurrence remains poorly understood. Recent evidence demonstrates that although long-lasting cells were considered tumor suppressors, senescent cancer cells, can induce the metastases and recurrence. In this study, we focused on the fate of ovarian cancer cells treated with carboplatin and explored the mechanism underlying ovarian cancer cell recovery from chemotherapy-induced senescence. Methods: SÁ-β-galactosidase staining was used to detect the impact of carboplatin on senescence of ovarian cancer cells. Cell proliferation was determined using direct cell counting, clone formation assay and 3D tumor spheroid formation assay. Lentivirus-mediated transduction was used to silence or upregulate EGFR expression. Quantitative real-time PCR and western blot analysis validated the efficacy of the knockdown or overexpression effect. Immunofluorescence staining and western blot analysis were used to examined the expression of EGFR and NF-KB. Cell death was determined using trypan blue staining assay. Results: Ovarian cancer cells treated by carboplatin exhibit a senescence-like phenotype indicated by SA-β-galactosidase positive staining. Importantly, carboplatin-induced senescence-like phenotype is reversible. In ovarian cancer cells, EGFR positively regulated cells proliferation, decreased carboplatin-induced senescence and upregulated the NF-κB1 protein level. EGFR/NF-κB1 upregulation promoted the recovery of ovarian cancer cells from senescence and chemoresistance to carboplatin. Conclusions: Ovarian cancer cells treated with carboplatin displayed a reversible senescence-like phenotype that could be combined with EGFR or NF-κB1 inhibitors to improve treatment effects.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin Tao ◽  
Hui Chen ◽  
Xiaolei Li ◽  
Jingcheng Wang

Abstract Background The over-proliferation of fibroblasts is considered to be the main cause of scar adhesion after joint surgery. Hydroxycamptothecin (HCPT), though as a potent antineoplastic drug, shows preventive effects on scar adhesion. This study aimed to investigate the role of activating transcription factor 6 (ATF-6) in the HCPT-induced inhibition of fibroblast viability. Methods The cell counting kit-8 (CCK-8) assay, western blot analysis, lentivirus-mediated gene silencing, transmission electron microscopy (TEM) analysis, immunofluorescent staining for autophagy-related protein light chain 3 (LC3) were used to explore the effect of HCPT on triggering fibroblast apoptosis and inhibiting fibroblast proliferation, and the involvement of possible signaling pathways. Results It was found that HCPT exacerbated fibroblast apoptosis and repressed its proliferation. Subsequently, endoplasmic reticulum stress (ERS)-related proteins were determined by western blot prior to ATF6 p50 was screened out and reexamined after it was silenced. As a result, ATF6-mediated ERS played a role in HCPT-induced fibroblast apoptosis. Autophagy-related proteins and autophagosomes were detected after the HCPT administration using western blot and TEM analyses, respectively. Autophagy was activated after the HCPT treatment. With the co-treatment of autophagy inhibitor 3-methyladenine (3-MA), both the western blot analysis and the CCK-8 assay showed inhibited autophagy, which indicated that the effect of HCPT on fibroblast proliferation was partially reversed. Besides, the LC3 immunofluorescence staining revealed suppressed autophagy after silencing ATF6 p50. Conclusion Our results demonstrate that HCPT acts as a facilitator of fibroblast apoptosis and inhibitor of fibroblast proliferation for curbing the postoperative scar adhesion, in which the ATF6-mediated ERS pathway and autophagy are involved.


Sign in / Sign up

Export Citation Format

Share Document