scholarly journals Thymosin-β4 Mediates Hepatic Stellate Cell Activation by Interfering with CircRNA-0067835/miR-155/FoxO3 Signaling Pathway

2018 ◽  
Vol 51 (3) ◽  
pp. 1389-1398 ◽  
Author(s):  
Lili Zhu ◽  
Tingting Ren ◽  
Zixin Zhu ◽  
Mingliang  Cheng ◽  
Qiuju Mou ◽  
...  

Background/Aims: Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrosis. Our study proved that thymosin beta 4 (Tβ4) has anti-fibrogenic effects in HSCs through PI3K/AKT pathway. However, the underlying mechanisms are not fully elucidated. Circular RNAs (circRNAs) play important roles in fine-tuning gene expression and are often deregulated in cancers. However, the expression profile and clinical significance of in liver fibrosis is still unknown. Therefore, we hypothesize that Tβ4 influences circRNAs in liver fibrosis. Methods: Circular RNA microarray was conducted to identify Tβ4-related circRNAs. Pathway analysis and miRNA response elements analysis was conducted to predict the potential roles of differentially expressed circRNAs in liver fibrosis. CCK8 assays and flow cytometric assays were conducted to clarify the role of circRNA in liver fibrosis. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in liver fibrosis. Results: A total of 644 differentially expressed circRNAs were identified between the Tβ4-depleted LX-2 cells and the control LX2 cells. The expression of circRNA-0067835 was significantly increased in the Tβ4-depleted LX-2 cells compared with control. Knockdown of circRNA-0067835 observably decreased LX-2 cell proliferation by causing G1 arrest and promoting apoptosis. Bioinformatics online programs predicted that circRNA-0067835 acted as miR-155 sponge to regulate FOXO3a expression, which was validated using luciferase reporter assay. Conclusion: Our experiments showed that circRNA-0067835 regulated liver fibrosis progression by acting as a sponge of miR-155 to promote FOXO3a expression, indicating that circRNA-0067835 may serve as a potential therapeutic target for patients with liver fibrosis.

2018 ◽  
Vol 51 (3) ◽  
pp. 1399-1409 ◽  
Author(s):  
Guo-Hua Gong ◽  
Feng-Mao An ◽  
Yu Wang ◽  
Ming Bian ◽  
Di Wang ◽  
...  

Background/Aims: Temporal lobe epilepsy (TLE) is the most common form of adult localization-related epilepsy that is accompanied by progressive etiopathology and high incidences of drug resistance. Circular RNAs (circRNAs) play important roles in fine-tuning gene expression, however, the expression profile and clinical significance of circRNAs in TLE remains unknown. Methods: Circular RNA microarray was conducted to identify TLE-related circRNAs. CCK8 assays and flow cytometric assays were conducted to clarify the role of circRNA in TLE in vitro. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in TLE cell. Results: 586 differentially expressed circRNAs were identified between TLE and the control tissues. The expression of circRNA-0067835 was significantly down-regulated in tissues and plasma from TLE patients. Lower circRNA-0067835 correlated to increased seizure frequency, HS, and higher Engel’s score. Overexpression of circRNA-0067835 observably decreased SH-SY5Y cell proliferation by causing G1 arrest and promoting apoptosis. Bioinformatics online programs predicted that circRNA-0067835 acted as miR-155 sponge to regulate FOXO3a expression, which was validated using luciferase reporter assay. Conclusion: Our experiments showed that circRNA-0067835 regulated refractory epilepsy progression by acting as a sponge of miR-155 to promote FOXO3a expression, indicating that circRNA-0067835 may serve as a potential therapeutic target for patients with TLE.


2018 ◽  
Vol 45 (2) ◽  
pp. 706-719 ◽  
Author(s):  
Bai-Hui Liu ◽  
Bin-Bin Zhang ◽  
Xiang-Qi Liu ◽  
Shan Zheng ◽  
Kui-Ran Dong ◽  
...  

Background/Aims: Hepatoblastoma is the most common malignant pediatric liver cancer. circular RNAs (circRNAs) play important roles in fine-tuning gene expression and are often deregulated in cancers. However, the expression profile and clinical significance of circRNAs in hepatoblastoma is still unknown. Methods: Circular RNA microarray was conducted to identify hepatoblastoma-related circRNAs. GO analysis, pathway analysis, and miRNA response elements analysis was conducted to predict the potential roles of differentially expressed circRNAs in hepatoblastoma. MTT assays, Ki67 staining, and Transwell assays were conducted to clarify the role of circRNA in hepatoblastoma in vitro. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in hepatoblastoma cell. Results: 869 differentially expressed circRNAs were identified between hepatoblastoma and adjacent normal liver samples, including 421 up-regulated circRNAs and 448 down-regulated circRNAs. The significant enriched GO term of hepatoblastoma-related circRNAs in biological process, cellular component, and molecular function were “chromosome organization”, “cytoplasm”, and “organic cyclic compound binding”. Tight junction signaling pathway was ranked the Top 1 potentially affected by circRNA-mediated regulatory network. circ_0015756 was significantly up-regulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. circ_0015756 silencing decreased hepatoblastoma cell viability, proliferation, and invasion in vitro. circ_0015756 acted as miR-1250-3p sponge to regulate hepatoblastoma cell function. Conclusions: circRNAs are involved in the pathogenesis of hepatoblastoma. circ_0015756 is a promising target for the prognosis, diagnosis, and treatment of hepatoblastoma.


2018 ◽  
Vol 51 (6) ◽  
pp. 2814-2828 ◽  
Author(s):  
Zhiqin Li ◽  
Jia Wang ◽  
Qinglei Zeng ◽  
Chunling Hu ◽  
Jiajia Zhang ◽  
...  

Background/Aims: HOTTIP is a critical modulator in human diseases including liver cancer, but its role and molecular biological mechanisms in liver fibrosis are still unclear. Methods: The expression profile of HOTTIP during the progression of liver fibrosis was detected in human liver samples and in CCl4-treated mice using qRT-PCR. The expressing sh-HOTTIP adenoviral vector was used to reduce HOTTIP levels in vivo. Dual-Luciferase Reporter Assay was performed to validate the interaction between miR-148a and HOTTIP, TGFBR1, or TGFBR2. Results: HOTTIP expressions in fibrotic liver samples and cirrhotic liver samples were significantly upregulated compared with healthy liver controls, and cirrhotic samples exhibited the highest levels of HOTTIP. Moreover, HOTTIP expressions were substantially induced in the liver tissues and hepatic stellate cells (HSC) of CCl4-treated mice. Ad-shHOTTIP delivery could alleviate CCl4- induced liver fibrosis in mice. Down-regulation of HOTTIP inhibited the viability and activation of HSCs in vitro, and HOTTIP negatively regulated miR-148a expression in HSCs. miR-148a had a negative effect on HSC activation by targeting TGFBR1 and TGFBR2. Conclusion: HOTTIP is involved in the progression of liver fibrosis by promoting HSC activation. The high level of HOTTIP downregulates miR-148a, thus to increase the level of TGFBR1 and TGFBR2 and contribute to liver fibrosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fei Pan ◽  
Dongqing Zhang ◽  
Na Li ◽  
Mei Liu

circRNAs (circular RNAs) are a family of noncoding RNAs and have diverse physiological and pathological functions. However, the functions and mechanisms of circRNAs in the development and progression of colorectal cancer (CRC) remain largely unknown. Here, we aimed to explore the functions and roles of circFAT1(e2) in CRC. qRT-PCR revealed that circFAT1(e2) in CRC tumor tissues was upregulated compared with that in adjacent normal tissues and was also upregulated in CRC cell lines. Small interfering RNAs (siRNAs) against circFAT1(e2) were used to decrease the expression of circFAT1(e2) in HCT116 and RKO cells in vitro. The roles of circFAT1(e2) in CRC cell metastasis and proliferation were then determined by transwell and CCK-8 assays. The results showed that circFAT1(e2) silencing markedly suppressed CRC growth. Moreover, we identified circFAT1(e2) as a promoter of CRC metastasis. Knockdown of circFAT1(e2) evidently reduced HCT116 and RKO cell migration and invasion. Furthermore, the regulatory relationship between circFAT1(e2) and its target miRNAs was verified by a luciferase reporter assay. We demonstrated that circFAT1(e2) could sponge miR-30e-5p, which regulated the expression level of integrin α6 (ITGA6), the downstream target gene of miR-30e-5p. Rescue assays demonstrated that knockdown of miR-30e-5p enhanced CRC proliferation and migration via ITGA6. Taken together, our results reveal the novel oncogenic roles of circFAT1(e2) in CRC through the miR-30e-5p/ITGA6 axis.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Wonbeak Yoo ◽  
Jaemin Lee ◽  
Kyung Hee Noh ◽  
Sangmin Lee ◽  
Dana Jung ◽  
...  

Abstract Progranulin (PGRN) is a cysteine-rich secreted protein expressed in endothelial cells, immune cells, neurons, and adipocytes. It was first identified for its growth factor-like properties, being implicated in tissue remodeling, development, inflammation, and protein homeostasis. However, these findings are controversial, and the role of PGRN in liver disease remains unknown. In the current study, we examined the effect of PGRN in two different models of chronic liver disease, methionine‐choline‐deficient diet (MCD)-induced non-alcoholic steatohepatitis (NASH) and carbon tetrachloride (CCl4)-induced liver fibrosis. To induce long-term expression of PGRN, PGRN-expressing adenovirus was delivered via injection into the tibialis anterior. In the CCl4-induced fibrosis model, PGRN showed protective effects against hepatic injury, inflammation, and fibrosis via inhibition of nuclear transcription factor kappa B (NF-κB) phosphorylation. PGRN also decreased lipid accumulation and inhibited pro-inflammatory cytokine production and fibrosis in the MCD-induced NASH model. In vitro treatment of primary macrophages and Raw 264.7 cells with conditioned media from hepatocytes pre-treated with PGRN prior to stimulation with tumor necrosis factor (TNF)-α or palmitate decreased their expression of pro-inflammatory genes. Furthermore, PGRN suppressed inflammatory and fibrotic gene expression in a cell culture model of hepatocyte injury and primary stellate cell activation. These observations increase our understanding of the role of PGRN in liver injury and suggest PGRN delivery as a potential therapeutic strategy in chronic inflammatory liver disease.


2021 ◽  
Author(s):  
Ning Wang ◽  
Xiajing Li ◽  
Zhiyong Zhong ◽  
Yaqi Qiu ◽  
Shoupei Liu ◽  
...  

Abstract BackgroundExosomes secreted from stem cells exerted salutary effects on the fibrotic liver. Herein, the roles of exosomes derived from human embryonic stem cell (hESC) in anti-fibrosis were extensively investigated. Compared with two-dimensional (2D) culture, the clinical and biological relevance of three-dimensional (3D) cell spheroids were greater because of their higher regeneration potential since they behave more like cells in vivo. In our study, exosomes derived from 3D human embryonic stem cells (hESC) spheroids and the monolayer (2D) hESCs were collected and compared the therapeutic potential for fibrotic liver in vitro and in vivo. ResultsIn vitro, PKH26 labled-hESC-Exosomes were shown to be internalized and integrated into TGFβ-activated-LX2 cells, and reduced the expression of profibrogenic markers, thereby regulating cellular phenotypes. TPEF imaging indicated that PKH26-labled-3D-hESC-Exsomes possessed an enhanced capacity to accumulate in the livers and exhibited more dramatic therapeutic potential in the injured livers of fibrosis mouse model. 3D-hESC-Exosomes decreased profibrogenic markers and liver injury markers, and improved the level of liver functioning proteins, eventually restoring liver function of fibrosis mice. miRNA array revealed a significant enrichment of miR-6766-3p in 3D-hESC-Exosomes, moreover, bioinformatics and dual luciferase reporter assay identified and confirmed the TGFβRII gene as the target of miR-6766-3p. Furthermore, the delivery of miR-6766-3p into activated-LX2 cells decreased cell proliferation, chemotaxis and profibrotic effects, and further investigation demonstrated that the expression of target gene TGFβRII and its downstream SMADs proteins, especially phosphorylated protein p-SMAD2/3 was also notably down-regulated by miR-6766-3p. These findings unveiled that miR-6766-3p in 3D-hESC-Exosomes inactivated SMADs signaling by inhibiting TGFβRII expression, consequently attenuating stellate cell activation and suppressing liver fibrosis. ConclusionsOur results showed that miR-6766-3p in the 3D-hESC-Exosomes inactivates smads signaling by restraining TGFβRII expression, attenuated LX2 cell activation and suppressed liver fibrosis, suggesting that 3D-hESC-Exosome enriched-miR6766-3p is a novel anti-fibrotic therapeutics for treating chronic liver disease. These results also proposed a significant strategy that 3D-Exo could be used as natural nanoparticles to rescue liver injury via delivering antifibrotic miR-6766-3p.


Author(s):  
Guangli Sun ◽  
Zheng Li ◽  
Zhongyuan He ◽  
Weizhi Wang ◽  
Sen Wang ◽  
...  

Abstract Background Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. Methods RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM). Results CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model. Conclusions CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xin-Yi Xu ◽  
Yan Du ◽  
Xue Liu ◽  
Yilin Ren ◽  
Yingying Dong ◽  
...  

Abstract Background Hepatic fibrosis is a pathological response of the liver to a variety of chronic stimuli. Hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. Follistatin like 1 (Fstl1) is a secreted glycoprotein induced by transforming growth factor-β1 (TGF-β1). However, the precise functions and regulation mechanisms of Fstl1 in liver fibrogenesis remains unclear. Methods Hepatic stellate cell (HSC) line LX-2 stimulated by TGF-β1, primary culture of mouse HSCs and a model of liver fibrosis induced by CCl4 in mice was used to assess the effect of Fstl1 in vitro and in vivo. Results Here, we found that Fstl1 was significantly up regulated in human and mouse fibrotic livers, as well as activated HSCs. Haplodeficiency of Fstl1 or blockage of Fstl1 with a neutralizing antibody 22B6 attenuated CCl4-induced liver fibrosis in vivo. Fstl1 modulates TGF-β1 classic Samd2 and non-classic JNK signaling pathways. Knockdown of Fstl1 in HSCs significantly ameliorated cell activation, cell migration, chemokines C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 8 (CXCL8) secretion and extracellular matrix (ECM) production, and also modulated microRNA-29a (miR29a) expression. Furthermore, we identified that Fstl1 was a target gene of miR29a. And TGF-β1 induction of Fstl1 expression was partially through down regulation of miR29a in HSCs. Conclusions Our data suggests TGF-β1-miR29a-Fstl1 regulatory circuit plays a key role in regulation the HSC activation and ECM production, and targeting Fstl1 may be a strategy for the treatment of liver fibrosis. Graphical abstract


2021 ◽  
Author(s):  
Weiqian Chen ◽  
Liyun Zheng ◽  
Songquan Wu ◽  
Chenying Lu ◽  
Bufu Tang ◽  
...  

Abstract Background: Cholangiocarcinoma (CCA) is an aggressive malignancy with a poor prognosis, with no effective therapy other than surgical resection. Circular RNAs (circRNAs) serve as a brand-new class of transcription products among abundant cancer processes. Nevertheless, the mechanisms account for their modification in CCA remain unknown. Methods: First, microarray sequencing was applied to detect the difference of circRNAs expression between CCA and corresponding non-tumor tissues. We utilized qRT-PCR to measure circ-0006302 levels in CCA cells and specimens. Gain/loss of-function assays and animal model of CCA were performed for the purpose of revealing the functions of circ-0006302 on the invasion, migration, and proliferation of CCA. We performed dual luciferase reporter, RNA-FISH and rescue assays for clarifying the mechanism behind. Results: In CCA tissues and cell lines circ-0006302 was highly expressed relatively. In vitro, overexpression of circ-0006302 intensifies the epithelial-to-mesenchymal transition (EMT) and the invasion, migration, and growth of CCA cells; and intensifies the growth as well as metastasis of tumors in a CCA mouse model. Furthermore, it was elucidated that circ-0006302 sponged miR-1299 to upregulate PD‐L1 expression. Through the process above, circ-0006302 binds to miR-1299 and emancipates PD-L1, facilitating the invasion, migration, and proliferation in CCA cells. Momentously, the results obtained revealed that circ-0006302 silencing elevated the expression of interferon (IFN)‐γ, and interleukin (IL)‐4 but diminished the IL-10 expression, while these effects could be reversed by miR-1299 inhibitor.Conclusion: circ-0006302 silence blocked the CCA progression via intensifying miR‐1299‐targeted downregulation of PD‐L1. Our conclusion provides novel therapeutic tactics for treating this fatal disease.


2021 ◽  
Author(s):  
Penghui Xu ◽  
Xing Zhang ◽  
Jiacheng Cao ◽  
Jing Yang ◽  
Zetian Chen ◽  
...  

Abstract Background: Gastric cancer (GC) ranks third in motality among all cancers worldwide. Circular RNAs (circRNAs) play essential roles in the malignant progression and metastasis of gastric cancer. As a transcription factor, FOXP2 is involved in the progression of many tumours. However, the regulation and association between circRNAs and FOXP2 remain to be discovered. Methods: RNA sequencing was used to explore differential circRNA expression profile in gastric cancer and quantitative real-time PCR (qRT-PCR) were used to detect circST3GAL6 expression. The cellular location of circST3GAL6 was determined by fluorescence in situ hybridization (FISH). Functional experiments in circST3GAL6 knockdown and overexpression cell lines were performed in vitro and in vivo. The correlation between circST3GAL6 and miR-300 was confirmed by the RNA pull-down assay, dual-luciferase reporter assay and fluorescence in situ hybridization (FISH). The effects of circST3GAL6 on autophagy were detected by confocal microscopy and transmission electron microscopy (TEM). The mechanism of the circST3GAL6/miR-300/FOXP2 axis was verified by western blotting. The transcriptional regulation of Met by FOXP2 was proven by ChIP and luciferase reporter assays.Results: CircST3GAL6 was significantly depressed in GC tissues and cells. circST3GAL6 overexpression inhibited the proliferation, invasion and metastasis of GC cells in vitro and in vivo. Importantly, circST3GAL6 overexpression induced apoptosis and promote autophagy in GC cells. Furthermore, we found that circST3GAL6 sponged miR-300 and subsequently regulated FOXP2. We further revealed that FOXP2 suppressed the activation of the Met/AKT/mTOR axis, a classic pathway that regulates autophagy-mediated proliferation and migration.Conclusion: Our findings revealed that circST3GAL6 functions as a tumour suppressor through the miR-300/FOXP2 axis in GC, regulates apoptosis and autophagy through FOXP2-mediated transcriptional inhibition of the MET axis and may be a biomarker for GC treatment.


Sign in / Sign up

Export Citation Format

Share Document