scholarly journals Knockout of Sphingosine Kinase 1 Attenuates Renal Fibrosis in Unilateral Ureteral Obstruction Model

2019 ◽  
Vol 50 (3) ◽  
pp. 196-203 ◽  
Author(s):  
Xiwen Zhang ◽  
Weili Wang ◽  
Xin-Ying Ji ◽  
Joseph K. Ritter ◽  
Ningjun Li

Background: Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in various diseases. S1P also plays significant roles in the differentiation of fibroblasts into myofibroblasts, being implicated in fibrotic diseases. S1P is produced by the phosphorylation of sphingosine catalyzed by sphingosine kinases (SphK1 and SphK2). It remains unclear if the activation of endogenous SphK1 contributes to fibrogenesis in kidneys. The present study determined the effect of SphK1 gene knockout (KO) on fibrotic markers in kidneys. Methods: The renal fibrosis was produced using the unilateral ureteral obstruction (UUO) model in wild-type (WT) and SphK1 gene KO mice. Renal mRNA levels of SphK1 and S1P receptors (S1PR) were measured by real-time RT-PCR. Fibrotic and immune cell markers in kidneys were measured by Western blot analysis and immunostaining, respectively. Renal morphological damage was examined by Periodic-Acid Schiff staining. Results: The mRNA levels of SphK1 and S1PRs were dramatically increased in renal tissues of WT-UUO mice, whereas the increase in renal SphK1 mRNA was blocked in KO-UUO mice. Interestingly, the increased levels of fibrotic markers, collagen and α-smooth muscle actin, in kidneys were significantly attenuated in KO-UUO versus WT-UUO mice. Meanwhile, kidney damage indices were remarkably attenuated in KO-UUO mice compared with WT-UUO mice. However, increased numbers of CD43+ and CD48+ cells, markers for T cell and macrophage, respectively, showed no significant difference between ­WT-UUO and KO-UUO kidneys. Conclusion: The activation of the SphK1-S1P pathway may contribute to tubulointerstitial fibrosis in UUO kidneys by affecting fibrotic signaling within renal cells independent of immune modulation.

2018 ◽  
Vol 315 (4) ◽  
pp. F769-F780 ◽  
Author(s):  
Zheng Wang ◽  
Alex Divanyan ◽  
Frances L. Jourd’heuil ◽  
Robert D. Goldman ◽  
Karen M. Ridge ◽  
...  

Most renal transplants ultimately fail secondary to chronic allograft nephropathy (CAN). Vimentin (vim) is a member of the intermediate filament family of proteins and has been shown to be important in the development of CAN. One of the pathways leading to chronic renal fibrosis after transplant is thought to be epithelial to mesenchymal transition (EMT). Even though vim expression is one of the main steps of EMT, it is unknown whether vim expression is required for EMT leading to renal fibrosis and allograft loss. To this end, the role of vim in renal fibrosis was determined via unilateral ureteral obstruction (UUO) in vim knockout mice (129 svs6 vim −/−). Following UUO, kidneys were recovered and analyzed via Western blotting, immunofluorescence, and transcriptomics. Cultured human proximal renal tubular (HK-2) cells were subjected to lentiviral-driven inhibition of vim expression and then treated with transforming growth factor (TGF)-β to undergo EMT. Immunoblotting as well as wound healing assays were used to determine development of EMT. Western blotting analyses of mice undergoing UUO reveal increased levels of vim soon after UUO. As expected, interstitial collagen deposition increased in control mice following UUO but decreased in vim −/− kidneys. Immunofluorescence analyses also revealed altered localization of β-catenin in vim −/− mice undergoing UUO without significant changes in mRNA levels. However, RNA sequencing revealed a decrease in β-catenin-dependent genes in vim −/− kidneys. Finally, vim-silenced HK-2 cell lines undergoing EMT were shown to have decreased cellular migration during wound healing. We conclude that vim inhibition decreases fibrosis following UUO by possibly altering β-catenin localization and downstream signaling.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Honglei Guo ◽  
Xiao Bi ◽  
Ping Zhou ◽  
Shijian Zhu ◽  
Wei Ding

Background and Aims. The nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) inflammasome has been implicated in the pathogenesis of chronic kidney disease (CKD); however, its exact role in glomerular injury and tubulointerstitial fibrosis is still undefined. The present study was performed to identify the function of NLRP3 in modulating renal injury and fibrosis and the potential involvement of mitochondrial dysfunction in the murine unilateral ureteral obstruction (UUO) model of CKD. Methods. Employing wild-type (WT) and NLRP3−/− mice with or without UUO, we evaluated renal structure, tissue injury, and mitochondrial ultrastructure, as well as expression of some vital molecules involved in the progression of fibrosis, apoptosis, inflammation, and mitochondrial dysfunction. Results. The severe glomerular injury and tubulointerstitial fibrosis induced in WT mice by UUO was markedly attenuated in NLRP3−/− mice as evidenced by blockade of extracellular matrix deposition, decreased cell apoptosis, and phenotypic alterations. Moreover, NLRP3 deletion reversed UUO-induced impairment of mitochondrial morphology and function. Conclusions. NLRP3 deletion ameliorates mitochondrial dysfunction and alleviates renal fibrosis in a murine UUO model of CKD.


Nephron Extra ◽  
2012 ◽  
Vol 2 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Masashi Nishida ◽  
Yasuko Okumura ◽  
Tatsujiro Oka ◽  
Kentaro Toiyama ◽  
Seiichiro Ozawa ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e110365 ◽  
Author(s):  
Bárbara Oujo ◽  
José M. Muñoz-Félix ◽  
Miguel Arévalo ◽  
Elena Núñez-Gómez ◽  
Lucía Pérez-Roque ◽  
...  

2018 ◽  
Vol 34 (10) ◽  
pp. 1657-1668 ◽  
Author(s):  
Ying Yang ◽  
Xiaojian Feng ◽  
Xinyan Liu ◽  
Ying Wang ◽  
Min Hu ◽  
...  

AbstractBackgroundRenal fibrosis is a key pathological feature and final common pathway leading to end-stage kidney failure in many chronic kidney diseases. Myofibroblast is the master player in renal fibrosis. However, myofibroblasts are heterogeneous. Recent studies show that bone marrow-derived macrophages transform into myofibroblasts by transforming growth factor (TGF)-β-induced macrophage–myofibroblast transition (MMT) in renal fibrosis.MethodsTGF-β signaling was redirected by inhibition of β-catenin/T-cell factor (TCF) to increase β-catenin/Foxo in bone marrow-derived macrophages. A kidney fibrosis model of unilateral ureteral obstruction was performed in EGFP bone marrow chimera mouse. MMT was examined by flow cytometry analysis of GFP+F4/80+α-SMA+ cells from unilateral ureteral obstruction (UUO) kidney, and by immunofluorescent staining of bone marrow-derived macrophages in vitro. Inflammatory and anti-inflammatory cytokines were analysis by enzyme-linked immunosorbent assay.ResultsInhibition of β-catenin/TCF by ICG-001 combined with TGF-β1 treatment increased β-catenin/Foxo1, reduced the MMT and inflammatory cytokine production by bone marrow-derived macrophages, and thereby, reduced kidney fibrosis in the UUO model.ConclusionsOur results demonstrate that diversion of β-catenin from TCF to Foxo1-mediated transcription not only inhibits the β-catenin/TCF-mediated fibrotic effect of TGF-β, but also enhances its anti-inflammatory action, allowing therapeutic use of TGF-β to reduce both inflammation and fibrosis at least partially by changing the fate of bone marrow-derived macrophages.


2022 ◽  
Vol 12 ◽  
Author(s):  
Mei Ying Xuan ◽  
Shang Guo Piao ◽  
Jun Ding ◽  
Qi Yan Nan ◽  
Mei Hua Piao ◽  
...  

Dapagliflozin, a sodium-glucose cotransporter-2 inhibitor, offers renoprotection in diabetes. However, potential for use in nondiabetic kidney disease remains unknown. Herein, we assessed whether dapagliflozin alleviates renal fibrosis by interfering with necroinflammation in a rat model of unilateral ureteral obstruction (UUO) and in vitro. After induction of UUO, rats were administered dapagliflozin daily for seven consecutive days. UUO induced significant renal tubular necrosis and overexpression of RIP1-RIP3-MLKL axis proteins; these coincided with NLRP3 inflammasome activation, and subsequent development of renal fibrosis. Oxidative stress caused by UUO is tightly associated with endoplasmic reticulum stress and mitochondrial dysfunction, leading to apoptotic cell death through Wnt3α/β-catenin/GSK-3β signaling; all of which were abolished by both dapagliflozin and specific RIP inhibitors (necrostatin-1 and GSK872). In H2O2-treated HK-2 cells, dapagliflozin and RIP inhibitors suppressed overexpression of RIP1-RIP3-MLKL proteins and pyroptosis-related cytokines, decreased intracellular reactive oxygen species production and apoptotic cell death, whereas cell viability was improved. Moreover, activated Wnt3α/β-catenin/GSK-3β signaling was inhibited by dapagliflozin and Wnt/β-catenin inhibitor ICG-001. Our findings suggest that dapagliflozin ameliorates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in UUO.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Dapeng Zhao ◽  
Zhongqiu Luan

Renal fibrosis is a common final pathological process in the progression of kidney disease. Oleanolic acid is a bioactive pentacyclic triterpenoid and is widely found in medicinal herbs around the world. In this study, we explored the effect of oleanolic acid on renal fibrosis and the underlying molecular mechanisms by using a rat model of unilateral ureteral obstruction (UUO). Male Sprague-Dawley rats were orally administered with oleanolic acid (6 mg/kg/d) or vehicle (olive oil) for 21 days after the UUO surgery. Upon termination, urine and blood were collected for renal function analysis, and kidneys were harvested for pathological analysis by using hematoxylin-eosin and Masson trichrome staining. Changes of extracellular matrix mRNA expressions and TGF-β/Smad signaling in the kidneys were also determined. As a result, oleanolic acid significantly reduced the kidney index, the level of serum creatinine and blood urea nitrogen, and the urinary level of microalbumin, α1-microglobulin, and N-acetyl-β-glucosaminidase. Masson trichrome staining showed significantly less collagen deposition in the UUO rats with oleanolic acid treatment. Diminished mRNA expressions of collagen I, collagen III, fibronectin, and α-SMA in the kidney tissues were observed after the treatment. Oleanolic acid led to decreased protein expressions of TGF-β, TGF-β receptor I, and TGF-β receptor II, as well as the phosphorylation of Smad2. Our current study suggested that oleanolic acid could be a complementary and alternative therapy for renal fibrosis potentially by targeting the TGF-β/Smad pathway.


Sign in / Sign up

Export Citation Format

Share Document