Appendicular Muscle Mass, Thigh Intermuscular Fat Infiltration, and Risk of Fall in Postmenopausal Osteoporotic Elder Women

Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Jacopo Antonino Vitale ◽  
Carmelo Messina ◽  
Domenico Albano ◽  
Edoardo Fascio ◽  
Fabio Galbusera ◽  
...  

Background: The association between the quantity and composition of skeletal muscle and the decline in physical function in elderly is poorly understood. Therefore, the primary aim of this cross-over study was to investigate the association between thigh intermuscular adipose tissue (IMAT) infiltration, appendicular muscle mass, and risk of fall in postmenopausal osteoporotic elder women. Second, we examined the differences in muscle mass, IMAT, and risk of fall in the same sample of older subjects after being classified as sarcopenic or nonsarcopenic on the basis of the dual-energy X-ray absorptiometry (DXA)-based Appendicular Skeletal Muscle Mass Index (ASMMI). Methods: Twenty-nine subjects (age: 72.4 ± 6.8; BMI: 23.0 ± 3.3; and T-score: −2.7 ± 0.2) completed the following clinical evaluations: (1) whole-body DXA to assess the ASMMI; (2) magnetic resonance to determine the cross-sectional muscle area (CSA) and IMAT of thigh muscles, expressed both in absolute (IMATabs) and relative (IMATrel) values; and (3) risk of fall assessment through the OAK system (Khymeia, Noventa Padovana, Italy). The existence of a correlation between the risk of fall (OAK scores, an automated version of the Brief-BESTest) and the clinical parameters (ASMMI, CSA, IMATrel, and IMATabs) was tested by the Pearson’s correlation index while data homogeneity between sarcopenic and nonsarcopenic subjects was tested through unpaired Student t tests or with the Mann-Whitney rank test. Effect sizes (ES) were used to determine the magnitude of the effect for all significant outcomes. Results: Eleven subjects were classified as sarcopenic and 18 as nonsarcopenic based on their ASMMI (cutoff value: 5.5 kg/m2). A positive correlation between OAK and CSA was observed (r2 = 0.19; p = 0.033), whereas a negative correlation between OAK and IMATrel was detected (r2 = 0.27; p = 0.009). No correlations were observed between OAK and ASMMI and between ASMMI and IMATrel. Sarcopenic subjects showed significantly lower weight (p = 0.002; ES = 1.30, large), BMI (p = 0.0003; ES = 1.82, large), CSA (p = 0.010; ES = 1.17, moderate), and IMATabs (p = 0.022; ES = 1.63, large) than nonsarcopenic individuals, whereas OAK scores and IMATrel were similar between groups. Discussion/Conclusion: Increased IMAT and lower CSA in the thigh muscles are associated with higher risk of fall while ASMMI, a value of appendicular muscle mass, was not associated with physical performance in older adults.

2020 ◽  
Vol 3 ◽  
Author(s):  
Shannon Zhou ◽  
Libbie Silverman ◽  
Andrew Young ◽  
David Roodman ◽  
Attaya Suvannasankha ◽  
...  

Background/Objective:  Low muscle mass (myopenia), poor muscle quality, myosteatosis, and muscle loss are associated with mortality in solid tumors. However, their impact in hematological malignancies remains unclear. We sought to determine how muscle phenotype relates to survival in patients with multiple myeloma.  Methods:  We performed a retrospective review of patients with multiple myeloma treated at Indiana University Hospital from 2012-2016. Total skeletal muscle area (SMA) (cm2) and radiodensity were measured on baseline (closest to diagnosis) and last CT scans at the third lumbar vertebrae area. SMA was normalized to height (SMA cm2/m2) to define skeletal muscle index (SKMI). Myopenia was defined as (SKMI) <52.4 cm2/m2 (men) and <38.5 cm2/m2 (women). Myosteatosis and obesity were defined per published BMI-specific cutoffs. Difference in survival between groups was estimated using log rank test.   Results:  Of 455 patients with multiple myeloma, 137 had more than one CT scan; 42 of these have been assessed to date. Half (21/42) were myopenic. Myopenia was equally prevalent across BMI categories and showed no association with survival. More than half of patients displayed myostetatosis; however, this was not associated with survival.  Obesity and myopenic obesity were likewise not correlated with survival. Below-median baseline SKMI correlated with mortality, HR 2.721 (95% CI, 1.160-5.564: P=0.0129). As well, below-median final SMA correlated with mortality, HR 2.381 (95% CI, 1.094-5.181, P=0.0213). On average patients lost .7129% of SMA (95% CI; -6.072%-4.646%). Females had higher mortality, HR 2.355 (95% CI 0.9895-5.604, P=0.0215).   Conclusion and Potential Impact:  Although this study represents a fraction of treated patients to date, myopenia was prevalent among patients at diagnosis of multiple myeloma. Low muscle mass and sex appear to be important prognostic factors for survival. Additional measurements as well as univariate and multivariate analyses are necessary to verify these findings and identify additional factors that contribute to survival in multiple myeloma. 


2017 ◽  
Vol 29 (9) ◽  
pp. 1644-1648 ◽  
Author(s):  
Akio Morimoto ◽  
Tadashi Suga ◽  
Nobuaki Tottori ◽  
Michio Wachi ◽  
Jun Misaki ◽  
...  

2003 ◽  
Vol 284 (1) ◽  
pp. E193-E205 ◽  
Author(s):  
G. van Hall ◽  
M. Jensen-Urstad ◽  
H. Rosdahl ◽  
H.-C. Holmberg ◽  
B. Saltin ◽  
...  

To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72–76% maximal O2 uptake. A high lactate appearance rate (Ra, 184 ± 17 μmol · kg−1 · min−1) but a low arterial lactate concentration (∼2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of ∼2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was ∼45% at rest and ∼95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate Ra during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.


2015 ◽  
Vol 308 (2) ◽  
pp. R105-R111 ◽  
Author(s):  
Wladimir M. Medeiros ◽  
Mari C. T. Fernandes ◽  
Diogo P. Azevedo ◽  
Flavia F. M. de Freitas ◽  
Beatriz C. Amorim ◽  
...  

Central cardiorespiratory and gas exchange limitations imposed by chronic obstructive pulmonary disease (COPD) impair ambulatory skeletal muscle oxygenation during whole body exercise. This investigation tested the hypothesis that peripheral factors per se contribute to impaired contracting lower limb muscle oxygenation in COPD patients. Submaximal neuromuscular electrical stimulation (NMES; 30, 40, and 50 mA at 50 Hz) of the quadriceps femoris was employed to evaluate contracting skeletal muscle oxygenation while minimizing the influence of COPD-related central cardiorespiratory constraints. Fractional O2 extraction was estimated by near-infrared spectroscopy (deoxyhemoglobin/myoglobin concentration; deoxy-[Hb/Mb]), and torque output was measured by isokinetic dynamometry in 15 nonhypoxemic patients with moderate-to-severe COPD (SpO2 = 94 ± 2%; FEV1 = 46.4 ± 10.1%; GOLD II and III) and in 10 age- and gender-matched sedentary controls. COPD patients had lower leg muscle mass than controls (LMM = 8.0 ± 0.7 kg vs. 8.9 ± 1.0 kg, respectively; P < 0.05) and produced relatively lower absolute and LMM-normalized torque across the range of NMES intensities ( P < 0.05 for all). Despite producing less torque, COPD patients had similar deoxy-[Hb/Mb] amplitudes at 30 and 40 mA ( P > 0.05 for both) and higher deoxy-[Hb/Mb] amplitude at 50 mA ( P < 0.05). Further analysis indicated that COPD patients required greater fractional O2 extraction to produce torque (i.e., ↑Δdeoxy-[Hb/Mb]/torque) relative to controls ( P < 0.05 for 40 and 50 mA) and as a function of NMES intensity ( P < 0.05 for all). The present data obtained during submaximal NMES of small muscle mass indicate that peripheral abnormalities contribute mechanistically to impaired contracting skeletal muscle oxygenation in nonhypoxemic, moderate-to-severe COPD patients.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Akira Nemoto ◽  
Toru Goyagi

Abstract Background Sarcopenia promotes skeletal muscle atrophy and exhibits a high mortality rate. Its elucidation is of the highest clinical importance, but an animal experimental model remains controversial. In this study, we investigated a simple method for studying sarcopenia in rats. Results Muscle atrophy was investigated in 24-week-old, male, tail-suspended (TS), Sprague Dawley and spontaneously hypertensive rats (SHR). Age-matched SD rats were used as a control group. The skeletal muscle mass weight, muscle contraction, whole body tension (WBT), cross-sectional area (CSA), and Muscle RING finger-1 (MuRF-1) were assessed. Enzyme-linked immunosorbent assay was used to evaluate the MuRF-1 levels. Two muscles, the extensor digitorum longus and soleus muscles, were selected for representing fast and slow muscles, respectively. All data, except CSA, were analyzed by a one-way analysis of variance, whereas CSA was analyzed using the Kruskal-Wallis test. Muscle mass weight, muscle contraction, WBT, and CSA were significantly lower in the SHR (n = 7) and TS (n = 7) groups than in the control group, whereas MuRF-1 expression was dominant. Conclusions TS and SHR presented sarcopenic phenotypes in terms of muscle mass, muscle contraction and CSA. TS is a useful technique for providing muscle mass atrophy and weakness in an experimental model of sarcopenia in rats.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254844
Author(s):  
Joon-Kee Yoon ◽  
Jeon Yeob Jang ◽  
Young-Sil An ◽  
Su Jin Lee

Purpose To evaluate the feasibility of using skeletal muscle mass (SMM) at C3 (C3 SMM) as a diagnostic marker for sarcopenia in head and neck cancer (HNC) patients. Methods We evaluated 165 HNC patients and 42 healthy adults who underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography scans. The paravertebral muscle area at C3 and skeletal muscle area at L3 were measured by CT. Pearson’s correlation was used to assess the relationship between L3 and C3 SMMs. The prediction model for L3 SMM was developed by multiple linear regression. Then the correlation and the agreement between actual and predicted L3 SMMs were assessed. To evaluate the diagnostic value of C3 SMM for sarcopenia, the receiver operating characteristics (ROC) curves were analyzed. Results Of the 165 HNC patients, 61 (37.0%) were sarcopenic and 104 (63.0%) were non-sarcopenic. A very strong correlation was found between L3 SMM and C3 SMM in both healthy adults (r = 0.864) and non-sarcopenic patients (r = 0.876), while a fair association was found in sarcopenic patients (r = 0.381). Prediction model showed a very strong correlation between actual SMM and predicted L3 SMM in both non-sarcopenic patients and healthy adults (r > 0.9), whereas the relationship was moderate in sarcopenic patients (r = 0.7633). The agreement between two measurements was good for healthy subjects and non-sarcopenic patients, while it was poor for sarcopenic patients. On ROC analysis, predicted L3 SMM showed poor diagnostic accuracy for sarcopenia. Conclusions A correlation between L3 and C3 SMMs was weak in sarcopenic patients. A prediction model also showed a poor diagnostic accuracy. Therefore, C3 SMM may not be a strong predictor for L3 SMM in sarcopenic patients with HNC.


2017 ◽  
Vol 117 (8) ◽  
pp. 1181-1188 ◽  
Author(s):  
Hui-yuan Tian ◽  
Rui Qiu ◽  
Li-peng Jing ◽  
Zhan-yong Chen ◽  
Geng-dong Chen ◽  
...  

AbstractResearches have suggested Mediterranean diet might lower the risk of chronic diseases, but data on skeletal muscle mass (SMM) are limited. This community-based cross-sectional study examined the association between the alternate Mediterranean diet score (aMDS) and SMM in 2230 females and 1059 males aged 40–75 years in Guangzhou, China. General information and habitual dietary information were assessed in face-to-face interviews conducted during 2008–2010 and 3 years later. The aMDS was calculated by summing the dichotomous points for the items of higher intakes of whole grain, vegetables, fruits, legumes, nuts, fish and ratio of MUFA:SFA, lower red meat and moderate ethanol consumption. The SMM of the whole body, limbs, arms and legs were measured using dual-energy X-ray absorptiometry during 2011–2013. After adjusting for potential covariates, higher aMDS was positively associated with skeletal muscle mass index (SMI, SMM/height2, kg/m2) at all of the studied sites in males (all Ptrend<0·05). The multiple covariate-adjusted SMI means were 2·70 % (whole body), 2·65 % (limbs), 2·50 % (arms) and 2·70 % (legs) higher in the high (v. low) category aMDS in males (all P<0·05). In females, the corresponding values were 1·35 % (Ptrend=0·03), 1·05, 0·52 and 1·20 %, (Ptrend>0·05). Age-stratified analyses showed that the favourable associations tended to be more pronounced in the younger subjects aged less than the medians of 59·2 and 62·2 years in females and males (Pinteraction>0·10). In conclusion, the aMDS shows protective associations with SMM in Chinese adults, particularly in male and younger subjects.


2021 ◽  
Author(s):  
Danae Delivanis ◽  
Maria Daniela Hurtado Andrade ◽  
Tiffany Cortes ◽  
Shobana Athimulam ◽  
Aakanksha Khanna ◽  
...  

Objective: Increased visceral fat and sarcopenia are cardiovascular risk factors that may explain increased cardiovascular morbidity and frailty in patients with adrenal adenomas. Our objective was to compare body composition measurement of patients with adrenal adenomas to referent subjects without adrenal disease Design: Cross-sectional study, 2014-2018 Methods: Participants were adults with nonfunctioning adrenal tumor (NFAT), mild autonomous cortisol secretion (MACS) and Cushing syndrome (CS), and age, sex and body mass index 1:1 matched referent subjects without adrenal disorders. Main outcome measures were body composition measurements calculated from abdominal computed tomography imaging. Intraabdominal adipose tissue and muscle mass measurements were performed at the 3rd lumbar spine level. Results: Of 227 patients with adrenal adenomas, 20 were diagnosed with CS, 76 with MACS and 131 with NFAT. Median age was 56 years (range, 18-89), and 67% were women. When compared to referent subjects, patients with CS, MACS, and NFAT demonstrated a higher visceral fat (odds ratio (OR) of 2.2 [95% CI 0.9-6.5], 2.0 [1.3-3.2], and 1.8 [1.2-2.7] and a lower skeletal muscle area (OR of 0.01 [95% CI 0-0.09], 0.31 [0.18-0.49], and 0.3 [1.2-2.7]), respectively. For every 1 mcg/dL cortisol increase after overnight dexamethasone, visceral fat/muscle area ratio increased by 2.3 (P=0.02) and mean total skeletal muscle area decreased by 2.2cm2 (P=0.03). Conclusion: Patients with adrenal adenomas demonstrate a lower muscle mass and a higher proportion of visceral fat when compared to referent subjects, including patients with NFAT. Even a subtle abnormality in cortisol secretion may impact health of patients with adenomas.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Adrianna I Acevedo-Fontanez ◽  
Ryan Cvejkus ◽  
Allison L Kuipers ◽  
Joseph Zmuda ◽  
Victor Wheeler ◽  
...  

Introduction: Skeletal muscle is the largest organ in the human body and vital to maintaining metabolic homeostasis. Increased skeletal muscle fat infiltration (i.e. myosteatosis) is now recognized as a major risk factor for cardio-metabolic diseases, independent of general obesity. Modifications in lifestyle, such as sleep, to reduce myosteatosis would be of great public health importance. However, studies of this relationship often use subjective data and are lacking in minority populations. The aim of this study was to examine the relation between objectively measured sleep duration and myosteatosis at the calf among African Caribbeans. Methods: Data were collected on men (n=393) and women (n=438) from the Tobago Health Study. Sleep duration and physical activity was collected using a SenseWear Pro Armband (BodyMedia, Inc.). Participants were instructed to wear the armband at all times, except in water, for 4-7 days. Measures of muscle density, intermuscular adipose tissue (IMAT), and area were obtained by peripheral QCT scans of the calf (Stratec XCT-2000). Model covariates included age, sex, BMI, diabetes, alcohol intake, smoking, and moderate to vigorous physical activity (MVPA). Linear regression was used to assess the relationship of sleep duration on skeletal muscle. Results: Mean sleep duration was 5.5 hours/day (Min 2.2, Max 11.6). Overall, participants were aged 58.7 years, had a BMI of 30.2 kg/m 2 , spent an average of 42 min/day in MVPA, and 18% were diabetic. In fully adjusted models, longer sleep duration was associated with smaller muscle area, but greater muscle density and less IMAT (all P<0.03). There was no interaction of sleep and sex on muscle density, area and IMAT (p-value=0.5184; 0.2730; 0.0954). Conclusions: In African Caribbean men and women, longer sleep duration was associated with less myosteatosis, as well as, less muscle area at the calf. Further research is warranted to understand this relationship longitudinally in order to determine how it may inform lifestyle guidelines in the Caribbean.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 755 ◽  
Author(s):  
Carina O. Walowski ◽  
Wiebke Braun ◽  
Michael J. Maisch ◽  
Björn Jensen ◽  
Sven Peine ◽  
...  

Assessment of a low skeletal muscle mass (SM) is important for diagnosis of ageing and disease-associated sarcopenia and is hindered by heterogeneous methods and terminologies that lead to differences in diagnostic criteria among studies and even among consensus definitions. The aim of this review was to analyze and summarize previously published cut-offs for SM applied in clinical and research settings and to facilitate comparison of results between studies. Multiple published reference values for discrepant parameters of SM were identified from 64 studies and the underlying methodological assumptions and limitations are compared including different concepts for normalization of SM for body size and fat mass (FM). Single computed tomography or magnetic resonance imaging images and appendicular lean soft tissue by dual X-ray absorptiometry (DXA) or bioelectrical impedance analysis (BIA) are taken as a valid substitute of total SM because they show a high correlation with results from whole body imaging in cross-sectional and longitudinal analyses. However, the random error of these methods limits the applicability of these substitutes in the assessment of individual cases and together with the systematic error limits the accurate detection of changes in SM. Adverse effects of obesity on muscle quality and function may lead to an underestimation of sarcopenia in obesity and may justify normalization of SM for FM. In conclusion, results for SM can only be compared with reference values using the same method, BIA- or DXA-device and an appropriate reference population. Limitations of proxies for total SM as well as normalization of SM for FM are important content-related issues that need to be considered in longitudinal studies, populations with obesity or older subjects.


Sign in / Sign up

Export Citation Format

Share Document