scholarly journals Putting Fine Particulate Matter and Dementia in the Wider Context of Noncommunicable Disease: Where are We Now and What Should We Do Next: A Systematic Review

2021 ◽  
pp. 1-13
Author(s):  
Ruth Peters ◽  
Ian Mudway ◽  
Andrew Booth ◽  
Jean Peters ◽  
Kaarin J. Anstey

<b><i>Introduction:</i></b> A significant proportion of the global population regularly experience air quality poorer than that recommended by the World Health Organization. Air pollution, especially fine particulate matter (PM<sub>2.5</sub>), is a risk factor for various noncommunicable diseases (NCDs) and is emerging as a risk factor for dementia. To begin to understand the full impact of PM<sub>2.5</sub>, we review the longitudinal epidemiological evidence linking PM<sub>2.5</sub> to both dementia and to other leading NCDs and highlight the evidence gaps. Our objective was to systematically review the current epidemiological evidence for PM<sub>2.5</sub> as a risk factor for cognitive decline and incident dementia and to put this in context with a systematic overview of PM<sub>2.5</sub> as a potential risk factor in other leading NCDs. <b><i>Methods:</i></b> We performed 2 systematic reviews. A high-level review of reviews examining the relationship between PM<sub>2.5</sub> and leading NCDs and an in-depth review of the longitudinal epidemiological data examining relationships between PM<sub>2.5</sub> incident dementia and cognitive decline. <b><i>Results:</i></b> There were robust associations between PM<sub>2.5</sub> and NCDs although in some cases the evidence was concentrated on short rather than longer term exposure. For those articles reporting on incident dementia, all reported on longer term exposure and 5 of the 7 eligible articles found PM<sub>2.5</sub> to be associated with increased risk. <b><i>Conclusion:</i></b> The evidence base for PM<sub>2.5</sub> as a risk factor for dementia is growing. It is not yet as strong as that for other NCDs. However, varied measurement/methodology hampers clarity across the field. We propose next steps.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Toro Araya ◽  
Robert Flocchini ◽  
Rául G. E. Morales Segura ◽  
Manuel A. Leiva Guzmán

Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter.


2012 ◽  
Vol 7 (4) ◽  
pp. 173
Author(s):  
Randy Novirsa ◽  
Umar Fahmi Achmadi

Salah satu dampak negatif industri pabrik semen terhadap kesehatan masyarakat adalah peningkatan risiko penyakit saluran pernapasan. Risiko tersebut banyak disebabkan oleh pajanan partikulat di udara, khususnya partikulat berukuran di bawah 2,5 mikron (PM2,5). Penelitian ini bertujuan menganalisis risiko pajanan PM2,5 di udara ambien siang hari pada masyarakat di kawasan industri semen. Risiko dihitung dengan metode Analisis Risiko Kesehatan Lingkungan berdasarkan metode Louvar yang menghasilkan nilai Intake pajanan yang diterima individu per hari berdasarkan nilai konsentrasi pajanan, pola aktivitas individu, dan nilai antropometri. Konsentrasi PM2,5 di lingkungan diukur pada 10 titik dengan radius 500 meter antartitik dari pusat pabrik, sedangkan pola aktivitas dan nilai antropometri diukur dengan menggunakan kuesioner pada 92 responden dewasa di kawasan pabrik. Hasil perhitungan risiko yang diterima seumur hidup (lifetime) menunjukkan terdapat tiga area berisiko dengan nilai RQ > 1, yaitu Ring 2 (500 – 1.000 m), Ring 4 (1.500 – 2.000 m), dan Ring 5 (2.000 – 2.500 m). Daerah paling aman yang dapat dihuni oleh masyarakat di kawasan industri semen adalah di atas 2,5 km dari pusat industri dengan konsentrasi paling aman 0,028 mg/m3.Kata kunci: Industri semen, infeksi saluran pernapasan, partikulat PM2,5AbstractOne of the negative impacts of cement industry to public health is an increased risk of respiratory disease. These risks are caused by exposure to particulate matter in air, especially fine particulate matter which is smaller than 2,5 microns (PM2,5). This study aimed to analyze the risks of PM2,5 exposure in ambien air at noon on people around cement industry. Risk was calculated using Environmental Health Risk Analysis Method that generates value of individual exposure intake received per day. This value was generated based on the concentration of exposure, individual activity patterns, and anthropometric values. PM2,5 concentrations in the environment was measured at 10 points (Ring) from the center of plant with radius of 500 meters each point. The activity patterns and anthropometric values were measured using questionnaire to 92 adult respondents around the factory. The calculation of lifetime risk showed that there are three risked area: Ring 2 (500 – 1.000 m), Ring 4 (1.500 – 2.000 m), and Ring 5 (2.000 – 2.500 m). The safest area was over 2,5 kilometers from the center of the industry with the safest concentration was 0,028 mg/m3.Keywords: Cement industry, respiratory disease, particulate PM2,5


2018 ◽  
Vol 67 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Yu-Hua Chu ◽  
Syuan-Wei Kao ◽  
Disline Manli Tantoh ◽  
Pei-Chieh Ko ◽  
Shou-Jen Lan ◽  
...  

The aim of this study was to investigate the association between fine particulate matter 2.5 (PM2.5) and oral cancer among Taiwanese men. Four linked data sources including the Taiwan Cancer Registry, Adult Preventive Medical Services Database, National Health Insurance Research Database, and Air Quality Monitoring Database were used. Concentrations of sulfur dioxide, carbon monoxide, ozone, NOx (nitrogen monoxide and nitrogen dioxide), coarse particulate matter (PM10-2.5) and PM2.5 in 2009 were assessed in quartiles. A total of 482 659 men aged 40 years and above were included in the analysis. Logistic regression was used to examine the association between PM2.5 and oral cancer diagnosed from 2012 to 2013. After adjusting for potential confounders, the ORs of oral cancer were 0.91 (95% CI 0.75 to 1.11) for 26.74≤PM2.5<32.37, 1.01 (95% CI 0.84 to 1.20) for 32.37≤PM2.5<40.37 µg/m3 and 1.43 (95% CI 1.17 to 1.74) for PM2.5≥40.37 µg/m3 compared with PM2.5<26.74 µg/m3. In this study, there was an increased risk of oral cancer among Taiwanese men who were exposed to higher concentrations of PM2.5.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ramachandran Prasannavenkatesh ◽  
Ramachandran Andimuthu ◽  
Palanivelu Kandasamy ◽  
Geetha Rajadurai ◽  
Divya Subash Kumar ◽  
...  

Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Masahiro Tahara ◽  
Yoshihisa Fujino ◽  
Kei Yamasaki ◽  
Keishi Oda ◽  
Takashi Kido ◽  
...  

Abstract Background Short-term exposure to ozone and nitrogen dioxide is a risk factor for acute exacerbation (AE) of idiopathic pulmonary fibrosis (AE-IPF). The comprehensive roles of exposure to fine particulate matter in AE-IPF remain unclear. We aim to investigate the association of short-term exposure to fine particulate matter with the incidence of AE-IPF and to determine the exposure-risk time window during 3 months before the diagnosis of AE-IPF. Methods IPF patients were retrospectively identified from the nationwide registry in Japan. We conducted a case–control study to assess the correlation between AE-IPF incidence and short-term exposure to eight air pollutants, including particulate matter < 2.5 µm (PM2.5). In the time-series data, we compared monthly mean exposure concentrations between months with AE (case months) and those without AE (control months). We used multilevel mixed-effects logistic regression models to consider individual and institutional-level variables, and also adjusted these models for several covariates, including temperature and humidity. An additional analysis with different monthly lag periods was conducted to determine the risk-exposure time window for 3 months before the diagnosis of AE-IPF. Results Overall, 152 patients with surgically diagnosed IPF were analyzed. AE-IPF was significantly associated with an increased mean exposure level of nitric oxide (NO) and PM2.5 30 days prior to AE diagnosis. Adjusted odds ratio (OR) with a 10 unit increase in NO was 1.46 [95% confidence interval (CI) 1.11–1.93], and PM2.5 was 2.56 (95% CI 1.27–5.15). Additional analysis revealed that AE-IPF was associated with exposure to NO during the lag periods lag 1, lag 2, lag 1–2, and lag 1–3, and PM2.5 during the lag periods lag 1 and lag 1–2. Conclusions Our results show that PM2.5 is a risk factor for AE-IPF, and the risk-exposure time window related to AE-IPF may lie within 1–2 months before the AE diagnosis. Further investigation is needed on the novel findings regarding the exposure to NO and AE-IPF.


Author(s):  
Yusuf Aina ◽  
Elhadi Adam ◽  
Fethi Ahmed

The study of the concentrations and effects of fine particulate matter in urban areas have been of great interest to researchers in recent times. This is due to the acknowledgment of the far-reaching impacts of fine particulate matter on public health. Remote sensing data have been used to monitor the trend of concentrations of particulate matter by deriving aerosol optical depth (AOD) from satellite images. The Center for International Earth Science Information Network (CIESIN) has released the second version of its global PM2.5 data with improvement in spatial resolution. This paper revisits the study of spatial and temporal variations in particulate matter in Saudi Arabia by exploring the cluster analysis of the new data. Cluster analysis of the PM2.5 values of Saudi cities is performed by using Anselin local Moran&rsquo;s I statistic. Also, the analysis is carried out at the regional level by using self-organizing map (SOM). The results show an increasing trend in the concentrations of particulate matter in Saudi Arabia, especially in some selected urban areas. The eastern and south-western parts of the Kingdom have significantly clustering high values. Some of the PM2.5 values have passed the threshold indicated by the World Health Organization (WHO) standard and targets posing health risks to Saudi urban population.


Sign in / Sign up

Export Citation Format

Share Document