Overexpression of miR-138-5p Sensitizes Taxol-Resistant Epithelial Ovarian Cancer Cells through Targeting Cyclin-Dependent Kinase 6

Author(s):  
Man Liang ◽  
Qin Li ◽  
Shuai Shi ◽  
Ya-ning Tian ◽  
Yanhong Feng ◽  
...  

<b><i>Background:</i></b> Ovarian cancer, one of the most malignant diseases in female, is associated with poor diagnosis and low 5-year survival rate. Taxol is a widely used chemotherapeutic drug for the treatment of ovarian cancer by targeting the microtubules of the mitotic spindle to induce cancer cell death. However, with the widespread clinical applications of Taxol, a large fraction of ovarian cancer patients developed drug resistance. <b><i>Results:</i></b> Here, we report miR-138-5p is significantly downregulated in epithelial ovarian cancer tissues compared with their matched normal ovarian tissues. Overexpression of miR-138-5p effectively sensitized ovarian cancer cells to Taxol. By establishing Taxol-resistant cell line from the epithelial ovarian cancer cell line, HO-8910, we found miR-138-5p was significantly downregulated in Taxol-resistant cells. Furthermore, overexpression of miR-138-5p dramatically overcame the chemoresistance of Taxol-resistant cells. Intriguingly, bioinformatic analysis indicated miR-138-5p had putative binding sites for cyclin-dependent kinase 6 (CDK6). This negative regulation was further verified from epithelial ovarian cancer tissues. Luciferase assay demonstrated miR-138-5p could directly bind to 3′UTR of CDK6. Importantly, silencing CDK6 expression by siRNA successfully increased the sensitivity of both parental and Taxol-resistant ovarian cancer cells. Finally, rescue experiments clearly elucidated restoration of CDK6 in miR-138-5p-overexpressing ovarian cancer cells successfully recovered the Taxol resistance. <b><i>Conclusion:</i></b> In summary, these findings suggest important molecular mechanisms for the miR-138-5p-mediated Taxol sensitivity of ovarian cancer via directly targeting CDK6, suggesting miR-138-5p is an effective therapeutic target for the noncoding RNA-based anti-chemoresistance treatment.

Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 644 ◽  
Author(s):  
Ghani ◽  
Dendo ◽  
Watanabe ◽  
Yamada ◽  
Yoshimatsu ◽  
...  

The success rate of establishing human cancer cell lines is not satisfactory and the established cell lines often do not preserve the molecular and histological features of the original tissues. In this study, we developed a novel culture method which can support proliferation of almost all primary epithelial ovarian cancer cells, as well as primary normal human oviductal epithelial cells. Cancer cells from fresh or frozen specimens were enriched by the anti-EpCAM antibody-conjugated magnetic beads, plated on Matrigel-coated plate and cultivated under the optimized culture conditions. Seventeen newly established ovarian cancer cell lines, which included all four major histotypes of ovarian cancer, were confirmed to express histotype-specific markers in vitro. Some of the cell lines from all the four histotypes, except mucinous type, generated tumors in immune-deficient mice and the xenograft tumor tissues recapitulated the corresponding original tissues faithfully. Furthermore, with poorly tumorigenic cell lines including mucinous type, we developed a novel xenograft model which could reconstruct the original tissue architecture through forced expression of a set of oncogenes followed by its silencing. With combination of the novel culture method and cell-derived xenograft system, virtually every epithelial ovarian cancer can be reconstituted in mice in a timely fashion.


2016 ◽  
Vol 64 (4) ◽  
pp. 950.1-950 ◽  
Author(s):  
SH Afroze ◽  
DC Zawieja ◽  
R Tobin ◽  
C Peddaboina ◽  
MK Newell-Rogers ◽  
...  

ObjectiveCinobufotalin (CINO), a cardiotonic steroid (CTS) or bufadienolide, is extracted from the skin secretions of the traditional Chinese medicine giant toads (Chan su). CINO has been used as a cardiotonic, diuretic and a hemostatic agent. Previously we have shown that CINO inhibits the cytotrophoblast cell function. Recently other study has shown that CINO inhibits A549, a lung cancer cell function. In this study, we assessed the effect of CINO on three different ovarian cancer cell lines; SK-OV-3, CRL-1978 and CRL-11731 to confirm whether the effect of CINO is cell specific.Study DesignWe evaluated the effect of CINO on three ovarian cancer cells SK-OV-3, CRL-1978, and CRL-11731 function in vitro. Each Cell lines were treated with different concentrations of CINO (0.1, 1, 5 and 10 µM). For each cell line cell proliferation, migration and invasion were measured by using a CellTiter Assay (Promega), Cytoselect Assay (Cell Biolabs) and by using a FluoroBlock Assay (BD) respectively. Proliferating Cell Nuclear Antigen (PCNA) was also evaluated in cell lysates of CINO treated these 3 ovarian cancer cells by western blot analysis. Cell Cycle arrest and Cell viability were determined by fluorescence-activated cell sorting (FACS) analysis. We also performed Annexin V staining on CINO treated these 3 ovarian cancer cell lines by immunofluorescence to evaluate the pro-apoptotic protein expression. In addition mitochondrial membrane potential has also been measured for all these 3 ovarian cell lines after CINO treatment using MMP kit, by FACS analysis.ResultsConcentration of CINO at 0.5 µM inhibit SK-OV-3, CRL-1978, and CRL-11731 ovarian cancer cells proliferation, migration and invasion without cell death and loss of cell viability but cell viability differs for each cell line. Each cell lines differ in response to CINO doses for PCNA expression as well as Annexin V pro-apoptotic protein expression. CINO decreases mitochondrial membrane potential for SK-OV-3 but for CRL-1978 and CRL-11731 increases in response to CINO treatment.ConclusionCINO is cell specific, as each cancer cell line responds differently. These data demonstrate that the mode of action of CINO is different on these 3 types of ovarian cancer cells.


Author(s):  
Bahire Kucukkaya ◽  
Demet Erdag ◽  
Fahri Akbas ◽  
Leman Yalcintepe

Aim: Anticancer drugs (chemotherapeutics) used in cancer treatment (chemotherapy) lead to drug resistance. This study was conducted to investigate the possible effect of iron on calcium homeostasis in epithelial ovarian cancer cells (MDAH-2774) and cisplatin-resistant cells of the same cell line (MDAH-2774/DDP). Methods: To develop MDAH-2774/DDP cells, MDAH-2774 (MDAH) cells were treated with cisplatin in dose increases of 5 μM between 0 μM and 70 μM. The effect of iron on the viability of MDAH and MDAH/DDP cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test at the end of 24 h incubation. Results: At increasing iron concentrations in MDAH and MDAH/DDP cells, the mRNA gene of fifteen genes [inositol 1,4,5-triphosphate receptor (IP3R)1/2/3, ryanodine receptor (RYR)1/2, sarco/endoplasmic reticulum Ca2+ ATPase (SERCA)1/2/3, Na+/Ca2+ exchange (NCX)1/2/3, and plasma membrane Ca2+ ATPase (PMCA)1/2/3/4] associated with Ca2+ differences in expression were determined by quantitative reverse transcription-polymerase chain reaction. Changes in IP3R2, RYR1, SERCA2, NCX3, PMCA1, and PMCA3 gene expressions were observed in iron treatment of MDAH/DDP cells, while changes were detected in iron treatment of MDAH cells in IP3R1/2/3, RYR1/2, SERCA1/2/3, NCX2/3, and PMCA1 expressions. Conclusions: This changes in the expression of calcium channels, pumps, and exchange proteins in the epithelial ovarian cancer cell line and in cisplatin-resistant epithelial ovarian cancer cells suggest that iron may have an important role in regulating calcium homeostasis. Due to differences in the expression of genes that play of an important role in the regulation of calcium homeostasis in the effect of iron, drug resistance can be prevented by introducing a new perspective on the use of inhibitors and activators of these genes and thus cytostatic treatment strategies.


2016 ◽  
Vol 39 (1) ◽  
pp. 242-252 ◽  
Author(s):  
Chanjuan Li ◽  
Hongjuan Ding ◽  
Jing Tian ◽  
Lili Wu ◽  
Yun Wang ◽  
...  

Background/Aims: FOXC2 has been reported to play a role in tumor progression, but the correlations of FOXC2 with the cisplatin (CDDP) resistance of ovarian cancer cells are still unclear. The purpose of the present study is to investigate the roles of FOXC2 in the CDDP resistance of ovarian cancer cells and its possible mechanisms. Methods: Quantitative real-time PCR (qRT-PCR) was performed to detect the expression of FOXC2 mRNA in CDDP-resistant or sensitive ovarian cancer tissues and cell lines (SKOV3/CDDP and SKOV3). Gain- and loss-of-function assays were performed to analyze the effects of FOXC2 knockdown or overexpression on the in vitro and in vivo sensitivity of ovarian cancer cells to CDDP and its possible molecular mechanisms. Results: The relative expression level of FOXC2 mRNA in CDDP-resistant ovarian cancer tissues was higher than that in CDDP-sensitive tissues. Also, the expression of FOXC2 mRNA and protein in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP) cell line was higher than that in its parental cell line (SOKV3). Small hairpin RNA (shRNA)-mediated FOXC2 knockdown significantly increased the in vitro and in vive sensitivity of SKOV3/CDDP cells to CDDP by enhancing apoptosis, while upregulation of FOXC2 significantly decreased the in vitro and in vivo sensitivity of SKOV3 cells to CDDP by reducing apoptosis. Furthermore, FOXC2 activates the Akt and MAPK signaling pathways, and then induced the decreased expression of Bcl-2 protein and the increased expression of Bax and cleaved caspase-3 proteins. Conclusions: FOXC2 mediates the CDDP resistance of ovarian cancer cells by activation of the Akt and MAPK signaling pathways, and may be a potential novel therapeutic target for overcoming CDDP resistance in human ovarian cancer.


The Analyst ◽  
2018 ◽  
Vol 143 (24) ◽  
pp. 6087-6094 ◽  
Author(s):  
Khansa Al-Jorani ◽  
Anja Rüther ◽  
Rukshani Haputhanthri ◽  
Glen B. Deacon ◽  
Hsiu Lin Li ◽  
...  

ATR-FTIR spectroscopy has been applied to compare the effect of new organoamidoplatinum(ii) complexes with cisplatin on cells from a cisplatin-sensitive and a cisplatin-resistant ovarian cancer cell line.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 640
Author(s):  
Garam An ◽  
Sunwoo Park ◽  
Minkyoung Lee ◽  
Whasun Lim ◽  
Gwonhwa Song

Ovarian cancer has a high mortality rate and high resistance to chemotherapy. Thus, many studies are currently assessing the ability of natural products to induce ovarian cancer cell death. A coumarin derivative, 4-methylumbelliferone (4-MU), has been reported to have anti-cancer effects on various cancers, but its effects on ovarian cancer are not fully understood. In this study, we identified the intracellular mechanism underlying the effects of 4-MU on epithelial ovarian cancer cells. Decreased ovarian cancer cell proliferation and an accumulation of cells in the G2/M phase were observed following 4-MU treatment. Moreover, 4-MU interfered with calcium homeostasis; induced endoplasmic reticulum stress in both cell lines; inhibited AKT and S6 phosphorylation; and increased ERK1/2, P38, and JNK phosphorylation. Furthermore, 4-MU and pharmacological inhibitors showed synergic effects in suppressing cell proliferation. Collectively, our current data indicate that antitumor effects of 4-MU could be appropriate for use as a therapeutic agent against epithelial ovarian cancer cells.


2015 ◽  
Vol 11 (1) ◽  
pp. 75
Author(s):  
Xue-Mei Gong ◽  
Cheng-Jiu Hu ◽  
Quan-Jing Zhao ◽  
Dong-Mei Shi

<p>Polyphenolic compounds present in fruits, vegetables and grains are bioactive molecules which elicit a wide range of responses both in vivo and in vitro. The aim of this study was to investigate whether the soybean isoflavone Equol could induce apoptosis in ovarian cancer cells. In this study, we evaluated molecular events associated with apoptosis induced by Equol and paclitaxel (PTX) in an ovarian cancer cell line SKOV-3. To assess whether growth inhibition was due to apoptosis, flow cytometry, colorimetry experiments, immunoblot analyses through measuring DNA fragmentation, the level of TRAIL,the cleavage of poly(ADP-ribose) polymerase (PARP) and the activation of caspase-3, -8 and -9 were also performed. Additional markers of apoptosis were also measured like phosphatidylserine externalization and morphological changes. In addition, glycoprotein P (P-gp) activity in SKOV-3 ovarian cancer cell line was also estimated. The experimental results showed that apoptosis was induced by extrinsic pathway triggered by certain TNF family members. Overall results suggested that Equol induces apoptosis in SKOV-3 cells via a TRAIL and caspase 8-dependent pathway whereas paclitaxel leads to smaller apoptotic events when compared to that of Equol.</p>


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Samaher Besbes ◽  
Shahid Shah ◽  
Iman Al-dybiat ◽  
Shahsoltan Mirshahi ◽  
Helene Helfer ◽  
...  

The thrombopoietin (TPO) gene expression in human ovary and cancer cells from patients with ovarian carcinomatosis, as well as several cancer cell lines including MDA-MB231 (breast cancer), K562 and HL60 (Leukemic cells), OVCAR-3NIH and SKOV-3 (ovarian cancer), was performed using RT PCR, real-time PCR, and gene sequencing. Human liver tissues are used as controls. The presence of TPO in the cells and its regulation by activated protein C were explored by flow cytometry. TPO content of cell extract as well as plasma of a patient with ovarian cancer was evaluated by ELISA. The functionality of TPO was performed in coculture on the basis of the viability of a TPO-dependent cell line (Ba/F3), MTT assay, and Annexin-V labeling. As in liver, ovarian tissues and all cancer cells lines except the MDA-MB231 express the three TPO-1 (full length TPO), TPO-2 (12 bp deletion), and TPO-3 (116 pb deletion) variants. Primary ovarian cancer cells as well as cancer cell lines produce TPO. The thrombopoietin production by OVCAR-3 increased when cells are stimulated by aPC. OVCAR-3 cell’s supernatant can replace exogenous TPO and inhibited TPO-dependent cell line (Ba/F3) apoptosis. The thrombopoietin produced by tumor may have a direct effect on thrombocytosis/thrombosis occurrence in patients with ovarian cancer.


2020 ◽  
Vol 19 (8) ◽  
pp. 1585-1590
Author(s):  
Yasong Chi ◽  
Ruiqin Yue ◽  
Yanru Lv ◽  
Wei Liao ◽  
Ruchang Yin

Purpose: To determine the effect of esomeprazole on apoptosis of ovarian cancer cells and their sensitivity to paclitaxel, and the underlying mechanism.Methods: Human ovarian paclitaxel-resistant cancer cells were cultured in vitro, and treated with esomeprazole at doses of 50, 100 and 250 mol/L. Cell proliferation was determined using MTT assay. Paclitaxel-resistant cells were divided into control group, esomeprazole group, paclitaxel group, and esomeprazole + taxol group. Western blot was employed for the assay of protein levels of bcl-2, Bcl-xl, P-gp and V-ATPase, while BCECF-AM method was employed to determine changes in intracellular pH.Results: Esomeprazole significantly inhibited the proliferation of paclitaxel-resistant cells in a dosedependent manner. The half-maximal inhibitory concentration (IC50) value of esomeprazole + paclitaxel was significantly low, when compared with those of the other treatments (p < 0.05). Apoptosis was significantly higher in esomeprazole + paclitaxel group than in any other treatment group (p < 0.05). The expressions of Bcl-2 and P-gp in esomeprazole + paclitaxel group decreased significantly, relative to the corresponding values for other groups, while protein expression of bcl-xl was markedly increased. The intracellular pH value of esomeprazole + paclitaxel group was significantly lower than those for other treatment groups (p < 0.05).Conclusion: Esomeprazole improves the acidic microenvironment of epithelial ovarian cancer by inhibiting the expression of V-ATPase, and restores the sensitivity of ovarian cancer cells to paclitaxel by inhibiting their proliferation and apoptosis. This revelation may explain patients’ resistance topaclitaxel. Keywords: Esomeprazole, V-ATPase, Apoptosis, Ovarian cancer, Taxol, Sensitivity


Sign in / Sign up

Export Citation Format

Share Document