scholarly journals Effect of Chirality and Oxide Thikness on the Performance of a Ballistic CNTFET

Author(s):  
Asma Laribi ◽  
Ahlam Guen Bouazza

<p>Since the discovery of 1D nano-object, they are constantly revealing significant physical properties. In this regard, carbon nanotube (CNT) is considered as a promising candidate for application in future nanoelectronics devices like carbon nanotube field effect transistor (CNTFET). In this work, the impact of chirality and gate oxide thikness on the electrical characteristics of a CNTFET are studied. The chiralities used are (5, 0), (10, 0), (19, 0), (26, 0), and the gate oxide thikness varied from 1 to 5 nm.This work is based on a numerical simulation program based on surface potential model. CNTFET Modeling is useful for semiconductor industries for nano scale devices manufacturing. From our results we have observed that the output current increases with chirality increasing.We have also highlight the importance of the gate oxide thickness on the drain current that increases when gate oxide is thin.</p>

2021 ◽  
Author(s):  
SHIKHA U S ◽  
Rekha K James ◽  
Jobymol Jacob ◽  
Anju Pradeep

Abstract The drain current improvement in a Negative Capacitance Double Gate Tunnel Field Effect Transistor (NC-DG TFET) with the help of Heterojunction (HJ) at the source-channel region is proposed and modeled in this paper. The gate oxide of the proposed TFET is a stacked configuration of high-k over low-k to improve the gate control without any lattice mismatches. Tangent Line Approximation (TLA) method is used here to model the drain current accurately. The model is validated by incorporating two dimensional simulation of DG-HJ TFET with one dimensional Landau-Khalatnikov (LK) equation. The model matches excellently with the device simulation results. The impact of stacked gate oxide topology is also studied in this paper by comparing the characteristics with unstacked gate oxide. Voltage amplification factor (Av), which is an important parameter in NC devices is also analyzed.


2005 ◽  
Vol 108-109 ◽  
pp. 637-642 ◽  
Author(s):  
Domenico Mello ◽  
Francesco Cordiano ◽  
Andrea Gerosa ◽  
Margherita Padalino ◽  
Carmelo Gagliano ◽  
...  

Contamination controls are very important issues in microelectronics. Any wrong substance introduction in process chambers can cause damages to the production line. Therefore, an extensive control is important because every operation in the process flow (also the most insignificant) can become fatal for the correct functioning of a microelectronic device. The aim of this work is to evaluate the impact of small metallic contamination in the range of 1011÷1012 at/cm2 on silicon substrates implanted with different ion species (As, B and P). An important example of failure related to metallic contamination in a wet bench is reported in this work. The problem appears in a particular class of flash memory devices processing. The electrical parametric test shows a wrong gate oxide thickness and Qbd values out of range, confirmed by early breakdown events and anomalous C-V characteristics. The cause of the failure is morphologically identified off-line by using TEM: the cross section shows a wrong gate oxide thickness and an anomalous interface between gate oxide and silicon substrate. It appears clear that the root failure cause is related to the ion implantation (As in this case) and to the cleaning before gate oxide growth. A short process flow was performed and analyzed step by step in order to identify the failure cause. Many different analytical techniques have been used for each step and all of these provide consistent results. In particular TXRF analysis on wafers processed immediately after cleaning do not show any contamination while Cu and Fe contaminants are observed after sample oxidation and As implant. Metallic contaminants are captured by the substrate after it is implanted with As, and the following RCA cleaning is not able to remove them. In addition, the presence of these metallic contaminants induces roughness of the Si surface and the growth of gate oxide is not controlled (faster oxidation). If different substrates are used, e.g. silicon implanted with B or un-implanted, this contamination level is not detected and does not lead to oxide reliability problems. Once the mechanism of metal contaminant interaction with dopant is identified the introduction of an in-line monitoring is possible, thus allowing to prevent the device failure. The short process loop can be considered as a good method to prepare the substrate before TXRF analysis. After this study the monitor has been integrated in the production line controls


2000 ◽  
Vol 610 ◽  
Author(s):  
G. Curello ◽  
R. Rengarajan ◽  
J. Faul ◽  
H. Wurzer ◽  
J. Amon ◽  
...  

AbstractIn this work, we report on the effect of different dual gate oxide (DGox) processes on the electrical properties of CMOS devices in deep submicron embedded DRAM (eDRAM) technology. Also discussed, is the effect of N+ Ion Implantation on the diffusion / segregation behaviour of B and In channel dopants. In particular, it will be shown that the N+ dose required to obtain a certain combination of dual gate oxide thickness varies with the gate oxide process. Effects of N+ dose on the In and B channel profiles are studied using SIMS. The impact of “thickness-equivalent” DGox processes on short channel effect (SCE) and carrier mobility is analyzed and tradeoffs for optimization of device performances are discussed.


Sign in / Sign up

Export Citation Format

Share Document