scholarly journals Bandwidth enhancement and miniaturization of circular-shaped microstrip antenna based on beleved half-cut structure for MIMO 2x2 application

Author(s):  
Teguh Firmansyah ◽  
Supriyanto Praptodiyono ◽  
Herudin Herudin ◽  
Didik Aribowo ◽  
Syah Alam ◽  
...  

<span lang="EN-US">In this paper, circular-shaped microstrip antenna was simulated, fabricated, and measured accordingly. As the novelty, to enhance bandwidth and reduce antenna size, beleved half-cut microstrip structure is proposed. Further, this proposed antenna structure will be applied to multiple input multiple output (MIMO) antenna 2</span><span lang="EN-US">´</span><span lang="EN-US">2. Therefore, this research was investigated conventional circular shape antenna (CCSA), circular shaped beleved antenna (CSBA), and MIMO circular shaped beleved antenna (MIMO-CBSA) as Model 1, Model 2, and Model 3, respectively. An FR4 substrate with er= 4.4, thickness h=1.6 mm, and tan d=0.0265 was used. The simulation has been conducted using Advanced Design System (ADS). The antenna CCSA/CSBA/ MIMO-CBSA achieve 1.831GHz/2.265 GHz/2.256 GHz, -15.13dB/-17.37dB/-17.25 dB, 1.42/1.31/1.33, and 1.474/2.332/2.322 for center frequency, reflection coefficient, VSWR, and bandwidth, respectively. This antenna has a size 63x90 mm and 51.5x90 mm for CCSA (Model 1) and CSBA (Model 2), respectively. After the structure of MIMO 2</span><span lang="EN-US">´</span><span lang="EN-US">2 was applied, the size of antenna MIMO-CBSA (Model 3) became 180 mm x 180 mm with a mutual coupling (S<sub>21</sub>)=-26.18 dB and mutual coupling (S<sub>31</sub>)=-26.41 dB. The result showed that proposed antenna CSBA (Model 2) has wider-bandwidth of 58,2% and smaller-size of 18.2%. Furthermore, after CSBA (Model 2) structure was applied to MIMO 2</span><span lang="EN-US">´</span><span lang="EN-US">2 (Model 3) and the MIMO antenna obtain good mutual coupling (&lt;-15dB). Moreover, the measured results are good agreement with the simulated results. In conclusion, all of these advantages make it particularly valuable in multistandard antenna applications design such as GSM950, WCDMA1800, LTE2300, and WLAN2400.</span>

2019 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
N. Al Shalaby ◽  
S. G. El-Sherbiny

In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs.  The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajit Kumar Singh ◽  
Santosh Kumar Mahto ◽  
Rashmi Sinha

Abstract This paper presents a miniaturized dual-element Super-Wideband (SWB) Multiple-Input-Multiple-Output (MIMO) antenna. The operation bandwidth is enhanced by 175% with a Bandwidth Dimension Ratio (BDR) of 6960, using a tapered microstrip line and employing an improved isolation technique. An inverted T-slot is used in the partial ground plane of the antenna. Isolation is increased up to 25 dB over the operating band (1.6–24.5 GHz) by using a pair of T-shaped stubs and a rectangular strip between them. A detailed analysis of the parameters Envelope Correlation Coefficient (ECC), Diversity Gain (DG), Mean Effective Gain (MEG), Total Active Reflection Coefficient (TARC), isolation between the ports, and Channel Capacity Loss (CCL) is undertaken to investigate the performance of proposed SWB MIMO antenna. A prototype of the proposed design is developed by fabricating on the FR–4 (loss tangent 0.02) dielectric substrate of electrical dimension 0.18λ 0 × 0.14λ 0. The measured parameters are in good agreement with the simulated ones. The proposed antenna focusses on 2.4–2.483 GHz frequency band (Bluetooth) and 3.4–3.6 GHz frequency band with a center frequency of 3.5 GHz (as part of the sub 6 GHz 5G band).


2017 ◽  
Vol 9 (8) ◽  
pp. 1763-1780 ◽  
Author(s):  
Leeladhar Malviya ◽  
Rajib Kumar Panigrahi ◽  
M. V. Kartikeyan

Multiple input multiple output (MIMO) antenna is at core of the presently available wireless technologies. The design of MIMO antennas over a limited space requires various approaches of mutual coupling reduction, otherwise gain, efficiency, diversity gain, and radiation patterns will be severely affected. Various techniques have been reported in literature to control this degrading factor and to improve the performance of the MIMO antennas. In this review paper, we have carried out an extensive thorough investigation of diversity and mutual coupling (correlation) reduction techniques in compact MIMO antennas.


Author(s):  
EFRI SANDI ◽  
WISNU DJATMIKO ◽  
RIZKITA KURNIA PUTRI

ABSTRAK Pada penelitian ini dikembangkan rekayasa antena mikrostrip (MSA) dengan penambahan U-slot ganda untuk meningkatkan performansi bandwidth antena mikrostrip. Penelitian sebelumnya berfokus pada penambahan U-slot tunggal dan didesain untuk frekuensi di bawah 15 GHz. Kebutuhan utama antena 5G adalah memiliki bandwidth yang lebar dan kemampuan Multiple Input Multiple Output (MIMO). Untuk itu perlu dikembangkan desain antena MIMO 5G dengan bandwidth yang lebih lebar pada frekuensi millimeter-wave 28 GHz sebagai kandidat utama alokasi frekuensi untuk komunikasi seluler 5G. Pada penelitian ini diajukan teknik desain antena MIMO dengan penambahan rekayasa U-slot ganda untuk meningkatkan performansi bandwidth. Hasil kalkulasi dan simulasi menunjukkan bahwa dengan penambahan U-slot ganda, dihasilkan peningkatan performansi bandwith sebesar 68% dibandingkan desain antena tanpa U-slot. Jika dibandingkan dengan hasil penelitian U-slot sebelumnya, penambahan U-slot ganda menghasilkan peningkatan bandwidth sebesar 76%. Kata kunci: U-Slot ganda, antena 5G millimeter-wave, MIMO, bandwidth ABSTRACT In this study, a microstrip antenna (MSA) was developed with the addition of a double U-slot to improve bandwidth performance. Previous studies have focused on adding single U-slots and designed for frequencies below 15 GHz. The main requirement for 5G antennas is high bandwidth performance and multiple inputmultiple output capabilities (MIMO). Therefore, it is necessary to develop a 5G MIMO antenna with broader bandwidth at the millimeter-wave frequency 28 GHz as the primary candidate for frequency allocation for 5G cellular communication. In this study, MIMO antenna design techniques were proposed with the addition of a double U-slot method to improve bandwidth performance. The calculation and simulation results show that with the addition of a double U-slot, an increase in bandwidth performance of 68% compared to antenna designs without U-slots and 76% when compared to using a single U-slot in previous studies. Keywords: Double U-Slot, millimeter-wave 5G antenna, MIMO, bandwidth


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Raghad Ghalib Saadallah Alsultan ◽  
Gölge Ögücü Yetkin

E-shaped multiple-input-multiple-output (MIMO) microstrip antenna systems operating in WLAN and WiMAX bands (between 5 and 7.5 GHz) are proposed with enhanced isolation features. The systems are comprised of two antennas that are placed parallel and orthogonal to each other, respectively. According to the simulation results, the operating frequency of the MIMO antenna system is 6.3 GHz, and mutual coupling is below −18 dB in a parallel arrangement, whereas they are 6.4 GHz and −25 dB, respectively, in the orthogonal arrangement. The 2 × 3 matrix of C-shaped resonator (CSR) is proposed and placed between the antenna elements over the substrate, to reduce the mutual coupling and enhance the isolation between the antennas. More than 30 dB isolation between the array elements is achieved at the resonant frequency for both of the configurations. The essential parameters of the MIMO array such as mutual coupling, surface current distribution, envelop correlation coefficient (ECC), diversity gain (DG), and the total efficiency have been simulated to verify the reliability and the validity of the MIMO system in both parallel and orthogonal configurations. The experimental results are also provided and compared for the mutual coupling with simulated results. An adequate match between the measured and simulated results is achieved.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 267 ◽  
Author(s):  
Amjad Iqbal ◽  
Omar A Saraereh ◽  
Amal Bouazizi ◽  
Abdul Basir

In this paper, a metamaterial structure is presented to lower the mutual coupling between the closely spaced microstrip patch antenna elements. Two elements Multiple Input Multiple Output (MIMO) antenna is closely placed with each other at edge to edge separation of 0.135 λ 0 (7 mm). Isolation improvement of 9 dB is achieved by keeping the metamaterial structure in between the MIMO elements. With the proposed structure, the isolation is achieved around −24.5 dB. Due to low ECC, high gain, low channel capacity loss and very low mutual coupling between elements, the proposed antenna is a good candidate for the MIMO applications. The proposed antenna is fabricated and tested. A reasonable agreement between simulated and measured results is observed.


Frequenz ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anand Kumar ◽  
Santosh Kumar Mahto ◽  
Rashmi Sinha ◽  
Arvind Choubey

AbstractA Triple-band Multiple-Input-Multiple-Output (MIMO) antenna for 5G mobile terminal applications is proposed in this paper. The design comprises four-port/two resonators, each having two concentric circular slot ring radiators etched on a ground plane of size 50 mm ${\times}$ 50 mm. The antenna is fed by perpendicularly arranged 50 Ω microstrip line feeds on the top layer. Decoupling techniques were used to suppress mutual coupling between the two resonators. The perpendicular arrangement of the feed lines and port reduces mutual coupling between the two ports and increases isolation. The antenna operates in multiple bands: 3.35–3.69 GHz, 24–28 GHz, and 37–40 GHz frequency range with central frequencies at 3.5 GHz, 26 GHz, and 38 GHz, respectively allocated for 5G. The antenna provides a gain of 2.7–7.8 dB and a radiation efficiency of 0.49–0.85 in the operating bands. Diversity performance is studied in terms of the Envelop Correlation Coefficient (ECC), Diversity Gain (DG), and Total Active Reflection Coefficient (TARC) were found to be less than 0.01, greater than 9.99 dB, and less than −10 dB respectively. The proposed antenna offers good S-parameters, voltage standing wave ratio (VSWR), TARC, radiation pattern, high gain, and low ECC. The antenna was fabricated and tested. The measured results and simulated results are in good agreement. It possesses sufficient potential for 5G mobile terminal and smart wearable applications.


Author(s):  
M. F. Ismail ◽  
H. A. Majid ◽  
C. Macwright ◽  
M. N. A. H. Shaabani ◽  
M. S. Mohd ◽  
...  

A study on the compact array microstrip patch antenna for multiple-input multiple-output (MIMO) communication system based on the antenna arrangement is performed. The 2.45 GHz rectangular array are arranged in 45 degree slanted inward and outward for each other to reduce the mutual coupling effect between the patches. The antenna properties are analyzed and compact antenna design is determined based on the simulation results. The results show the antennas can very compact while maintaining low mutual coupling. The gain of the MIMO antenna is 11.3 dBi. The simulated and tested return losses, together with the radiation patterns, are presented and discussed.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 194 ◽  
Author(s):  
Habib Ullah ◽  
Saeed Ur Rahman ◽  
Qunsheng Cao ◽  
Ijaz Khan ◽  
Hamid Ullah

This paper presents a compact planar multiple input multiple output (MIMO) antenna for super wide band (SWB) applications. The presented MIMO antenna comprises two identical patches on the same substrate. Dimensions of the MIMO antenna are 0.17λ × 0.20λ × 0.006λ mm3, with respect to the lowest resonance of 1.30 GHz. The SWB antenna was manufactured using F4B substrate having a dielectric constant of 2.65 that provides a percent impedance bandwidth and bandwidth ratio of 187% and 30.76:1, respectively. The mutual coupling between the antenna elements is suppressed by placing a T-shaped corrugated strip in the mid of two antenna elements. The proposed MIMO antenna exhibits maximum diversity gain of 10 dB, low mutual coupling (<−20 dB), low envelope correlation coefficient (ECC < 0.02), efficiency >80%, and low reflection coefficient (<−10 dB) in the SWB frequency range (1.30 GH–40 GHz). The presented antenna is a good candidate for SWB applications. The designed antenna has been experimentally validated, and the simulated results were also verified.


Author(s):  
Charles MacWright Thomas ◽  
Huda A. Majid ◽  
Zuhairiah Zainal Abidin ◽  
Samsul Haimi Dahlan ◽  
Mohamad Kamal A. Rahim ◽  
...  

<p>A study on the V-shaped microstrip patch antenna for multiple-input multiple-output (MIMO) communication system based on the antenna orientation is performed. First the microstrip patch antenna operating at 2.45 GHz is calculated and simulated. Next, multiple element of antennas for MIMO system is simulated and discussed. V-shaped with 45 degree slanted inward and outward is studied. The antenna properties is analyzed and compact antenna design is determined based on the simulation results. The results shows the gap between antennas can be optimized to 1 mm while maintaining low mutual coupling. The gain of the MIMO antenna is 8.42 dBi. The simulated return losses, together with the radiation patterns, are presented and discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document