scholarly journals Study on footstep power generation using piezoelectric tile

Author(s):  
Anis Maisarah Mohd Asry ◽  
Farahiyah Mustafa ◽  
Sy Yi Sim ◽  
Maizul Ishak ◽  
Aznizam Mohamad

<span>Electrical energy is important and had been demand increasingly. A lot of energy resources have been wasted and exhausted. An alternative way to generate electricity by using a population of human had been discovered When walking, the vibration that generates between the surface and the footstep is wasted. By utilizing this wasted energy, the electrical energy can be generated and fulfill the demand. The transducer that use to detect the vibration is a piezoelectric transducer. This transducer converts the mechanical energy into electrical energy. When the pressure from the footstep is applied to the piezoelectric transducer, it will convert the pressure or the force into the electrical energy. The piezoelectric transducer is connected in series-parallel coonection. Then, it is placed on the tile that been made from wood as a model for footstep tile to give pressure to the piezoelectric transducers. This tile can be placed in the crowded area, walking pavement or exercise instruments. The electric energy that generates from this piezoelectric tile can be power up low power appliances.</span>

Author(s):  
Gaurav Thapliyal

In the day-to-day life, the utilization of power turns of being necessary for each work. This paper focuses on designing a setup that leads to the generation of electrical energy which is going to waste when humans are walking. There are different methods used to produce energy like conventional and non-conventional methods. In this project, we are doing generation of power by walking or running. Power can be generated by walking on the stairs. The generated power will be stored and then we can use it for domestic purposes. The paper proposes a novel technique for the creation of power utilizing piezoelectric sensors kept along the footpaths which can be ready to charge the battery and ready to supply the force at whatever time of our prerequisite. The non-conventional energy system is very essential currently to our nation. Nonconventional energy using footstep is converting mechanical energy into Electrical Energy. Due to this a lot of energy resources have been exhausted and wasted. This system can be installed at homes, schools, colleges, where people move around the clock. The footstep power generation technique through piezoelectric sensors produces electrical force by changing piezoelectric force generation framework is that is sheltered and secure to utilize it does not make any issue or distress for the general population strolling through the footpath, and it is a free strategy. This project will be cost-effective and easy to be installed in populated areas like railway stations, bus stands, and shopping malls. Our project is cost-effective and easy to implement.


2015 ◽  
Vol 77 (21) ◽  
Author(s):  
Jazli Firdaus Jamil ◽  
Mohd Azman Abdullah ◽  
Norreffendy Tamaldin ◽  
Ahmed Esmael Mohan

The world is demanding for alternative way of energy consumption for vehicle usage. The energy efficient vehicle (EEV) is one of the advancement for future land transportation that known as hybrid and electric vehicles nowadays. The vehicles use different energy other than fuel which is electric energy. This paper emphasizes the development of electromagnetic energy regenerative suspension system (EReSS) as a system that harvests energy from the vibration of vehicle suspension system. The harvested energy is converted to electrical energy for vehicle usage. A prototype of electromagnetic EReSS is fabricated and laboratory experimentation on test rig is conducted to test the voltage output. It is observed that the EReSS can harvest the wasted energy from the vibration and produce sufficient electric energy for the vehicle electrical and electronic usage. The number of windings of the coil and diameter of the coil affect the voltage output of the EReSS. The voltage output of the EReSS can be optimized by setting up the parameters. As the EReSS is proven to harvest energy, it can be used on hybrid and electric vehicle to improve the efficiency of the vehicle and reduce the fuel consumption.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


Author(s):  
Saad F. Alazemi ◽  
Ahmet S. Yigit ◽  
Khaled A. Alhazza

In the past decade, there have been numerous studies which showed the feasibility of harvesting electrical energy from vibrating structures. The main goal of this study is first to generate a Finite Element (FE) model using ANSYS to verify an existing harvesting model. This FEM model can be used as a base for designing more complex harvesters. The second goal of this study is to optimize the parameters of a simple cantilever harvester to maximize the power generation from ambient mechanical energy. A distributed parameter model and its modal solution are used to identify the design variables through a parametric study. The results obtained using the distributed parametric model is compared with the results obtained using ANSYS. It is of interest to ensure adequate power generation under non-resonant conditions for a broad band excitation. The average power within a certain frequency range is used as the cost function to define optimization problem along with some geometric and physical constraints. We found that, in certain frequency ranges, the parameters can be optimized to generate maximum power. Having validated the methodology, work is in progress to design and optimize harvesters with complex geometries.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Zhigang Sun ◽  
Bruno Rocha ◽  
Kuo-Ting Wu ◽  
Nezih Mrad

Piezoelectric transducers have a long history of applications in nondestructive evaluation of material and structure integrity owing to their ability of transforming mechanical energy to electrical energy and vice versa. As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM) technologies capable of providing on-demand diagnosis of the structure without interrupting the aircraft operation are attracting increasing R&D efforts. Piezoelectric transducers play an essential role in these endeavors. This paper is set forth to review a variety of ingenious ways in which piezoelectric transducers are used in today’s SHM technologies as a means of generation and/or detection of diagnostic acoustic waves.


2020 ◽  
Vol 209 ◽  
pp. 07012
Author(s):  
Oleg V. Zapanov ◽  
Lidiia I. Kovernikova

Joint Stock Company (JSC) “Mine Aleksandrovsky” is located in the Mogochinsky district of the Trans-Baikal Territory. “Mine Aleksandrovsky” concluded an energy supply agreement with JSC “Chitaenergosbyt” for the purchase of electric energy from it. In accordance with the contract, the electric energy supplier undertakes to supply electric energy that meets the requirements of the current legislation of the Russian Federation. The power quality in the Trans-Baikal Territory in most regions does not meet the requirements of State Standard 32144-2013. Suppliers and the network organization are responsible to consumers for the reliability of its electric energy supply and its quality within the boundaries of their electric networks. Despite the obligations of the contract, the electric energy supplied to “Mine Alexandrovsky” does not meet the requirements. In 2017 the ball mill engine in the shredding department of the gold recovery factory failed as a result of power outages and the supply of low power quality through the 6 kV line. The article provides information on interruptions in power supply over the years of operation of the enterprise, the results of analysis of the power quality, information on damage to electrical equipment caused by low power quality, and economic damage.


Author(s):  
Enrico Bischur ◽  
Norbert Schwesinger

Plane PVDF-foil modules have been developed and successfully tested that generate electrical energy out of the mechanical energy of dynamic weight forces. For instance electrical energy can be generated, if people or vehicles pass such modules on a ground area. This method is based on the piezoelectric effect of stretched PVDF-foil. The energy conversion of the generator modules was investigated with regard to the remanent polarization of the PVDF material. Furthermore, the influence of the PVDF layer system was investigated on the energy conversion. The measured values are compared with values calculated analytically. It was found that a higher remanent polarization of the PVDF material lead to a better energy conversion. Even more electrical energy could be generated, if more PVDF layers were stacked above each other. If the values were normalized on the PVDF volume used in each case, the values of the electric energy were not constant. However, a maximum was observed at n = 21 layers. The measured energy values were higher than calculated values of the longitudinal piezoelectric effect. This could be caused by a simultaneous expansion of the PVDF film in a direction vertical to the direction of the mechanical load. These generator modules could be used as new energy source for emergency lighting, alarm systems, traffic sensors, etc.


2021 ◽  
Author(s):  
Yansheng Li ◽  
Meimei Yang ◽  
Bo Wei ◽  
Yi Zhang

Abstract The energy of mobile robots severely limits their range of motion and work capabilities. This paper proposes a method of capturing energy from the amphibious environment for a spherical robot with pendulums. The movement of pendulums is analyzed during amphibious movement, and a feasible scheme is proposed for a pendulum to capture environmental energy and convert mechanical energy into electrical energy. The mathematical model of the swing power generation is established based on the pendulum dynamic equation and voltage balance equation. The physics experiment platform and virtual experimental platform are built to analyse the power generation performance. Furthermore, the power generation mathematical models are established respectively for the spherical robot rolling on the slope and floating in the water, and the power generation performance is analyzed and summarized under different conditions. The results show that the proposed power generation method and scheme can effectively supply the energy to the spherical robot, can enhance the endurance of the movement in the amphibious environment, and provide theoretical guidance for the development of the physical prototype of the new generation of amphibious spherical robot.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Shigeru Shimose ◽  
Kanjuro Makihara ◽  
Junjiro Onoda

The efficiency of harvesting energy from a vibrating structure using a piezoelectric transducer and a simple analog circuit is investigated experimentally. This analog circuit was originally invented for a synchronized switch damping on inductor (SSDI) technique, which enhances the damping of mechanical vibration. In this study, the circuit is used to implement a synchronized switch harvesting on inductor (SSHI) technique. A multiple degree of freedom (MDOF) structure is excited by single sinusoidal forces at its resonant frequencies and by random forces. The piezoelectric transducer converts this mechanical energy into electrical energy which is harvested using a standard rectifier bridge circuit with and without our analog circuit. Experimental results show that our analog circuit makes it possible to harvest twice as much energy under both single sinusoidal and random vibration excitations.


2019 ◽  
Vol 24 (1) ◽  
pp. 39-48
Author(s):  
SeyedBijan Mahbaz ◽  
Giovanni Cascante ◽  
Maurice B. Dusseault

A piezoelectric transducer is an electromechanical sensor which converts electrical energy (voltage signal) to mechanical energy (displacement signal) and vice versa by taking advantage of the piezoelectric crystal. Depending on the physical combination of transducer parts, sensors may have a linear or non-linear response to the input signal. In seismic tests such as ultrasonic non-destructive testing (NDT) methods, analyzing stress wave propagation through the specimen gives an assessment of its condition. The signal attenuation is an important parameter to assess the condition of specimen which can be done by having the displacement signal as an output. However, instead of the displacement signal, the piezoelectric transducer provides the voltage signal as an output. Therefore, to get reliable and accurate results, it is essential to calibrate the transducers. An appropriate calibration results in a suitable Transfer Function (TF) which can be used to properly calculate the displacement signal. In this study, the output displacement of a 1 MHz piezoelectric transducer is measured using a laser vibrometer with a nanometer resolution. Measurements and calculated TF showed at frequencies of 0.1, 1, and 1.5 MHz, TF values are 0.8, 0.08, and 0.2 respectively which is a non-linear relation between displacement (absolute signal) and voltage (relative signal) as it was expected. Then, numerical simulation is implemented as part of this study to simulate all electrical and mechanical components of the piezoelectric transducer. The simulation was verified with the absolute displacement measurements result from the laser vibrometer.


Sign in / Sign up

Export Citation Format

Share Document