Control Strategy for PWM Voltage Source Converter Using Fuzzy Logic for Adjustable Speed DC Motor

Author(s):  
Saidah Baisa ◽  
Bambang Purwahyudi ◽  
Kuspijani Kuspijani

The speed of a DC motor can be controlled by varying the voltage applied to the terminal. It can be done by controlling a PWM-VSC (PWM-Voltage Source Converter). This paper analyzes an control strategy of PWM-VSC using fuzzy logic to obtain varying DC voltage and according to the DC motor speed as desired. The control strategy of PWM-VSC directly using the switch variable in dq rotating reference frame as input variables. The fuzzy logic controller proposes to get a DC voltage variation stable by adjusting amplitudo of the network current. The simulation Fuzzy Logic Controller results show that the design fuzzy logic produce a good dynamic of DC voltage and DC motor speed without overshoot. On the network, Total Harmonic Distortion less than 5 % and unity power factor.

Author(s):  
Sanatan Kumar ◽  
Debanjan Roy ◽  
Madhu Singh

<span>This paper presents a PFC (Power Factor Correction) Cuk converter fed BLDC (Brushless DC) motor drive and the speed of BLDC motor is controlled using fuzzy logic implementation. The PFC converters are employed to enhance the power quality. The Brushless DC motor speed is under the control of DC-bus voltage of VSI-Voltage Source Inverter in which switching of low frequency is used. This helps in the electronic commutation of BLDC motors thus decreasing the switching losses in VSI. A DBR (Diode Bridge Rectifier) next to the PFC Cuk converter controls the voltage at DC link maintaining unity power factor. The characteristics of Cuk converter in four dissimilar modes of operation are studied such as continuous and discontinuous conduction modes (CCM and DCM) respectively. The entire system is simulated using Matlab/Simulink software and the simulation results are reported to verify the performance investigation of the proposed system.</span>


2020 ◽  
Vol 12 (2) ◽  
pp. 100-110
Author(s):  
Muhammad Aditya Ardiansyah ◽  
Renny Rakhmawati ◽  
Hendik Eko Hadi Suharyanto ◽  
Era Purwanto

Beragamnya metode yang ditawarkan oleh fuzzy logic kontroller membuat sebagaian orang meneliti mengenai perbedaan metode inferensi yang digunakan oleh fuzzy logic controller. Sejauh ini terdapat tiga metode fuzzy logic kontroller yang telah dikembangkan yaitu Mamdani, Sugono dan Sukamoto. Pada jurnal ini penggunaan fuzzy logic kontroller akan dievaluasi dengan menggunakan motor dc penguat terpisah sebagai beban untuk melakukan pengaturan kecepatan motor dc. Pada paper ini tujuan utamanya adalah dapat mengendalikan kecepatan dari motor DC Penguatan Terpisah dengan mengatur tegangan jangkar dari motor tersebut. DC motor merupakan salah satu jenis motor memiliki banyak aplikasi dan memiliki kemudahan untuk mengatur kecepatan pada motor tersebut. Logika fuzzy yang digunakan pada studi ini adalah inferensi sugeno dimana dengan konfigurasi Multiple Input Single Output (MiSo). Dimana input berupa error dan perubahan error dan output berupa duty cycle dikarenakan yang dikendalikan oleh logika fuzzy adalah Boost Converter selaku controlled voltage source. Target pada jurnal ini adalah dari kecilnya nilai steady – state error dan minimnya osilasi sehingga mampu membuat sistem lebih stabil. Pada studi ini, Hasil pengujian dilakukan dengan menggunakan Simulink by Matlab dengan Hasil pengujian berupa error rata rata sebesar 5.36%.


Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sumardi Sadi

DC motors are included in the category of motor types that are most widely used both in industrial environments, household appliances to children's toys. The development of control technology has also made many advances from conventional control to automatic control to intelligent control. Fuzzy logic is used as a control system, because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this research is to study and apply the fuzzy mamdani logic method to the Arduino uno microcontroller, to control the speed of a DC motor and to control the speed of the fan. The research method used is an experimental method. Global testing is divided into three, namely sensor testing, Pulse Width Modulation (PWM) testing and Mamdani fuzzy logic control testing. The fuzzy controller output is a control command given to the DC motor. In this DC motor control system using the Mamdani method and the control system is designed using two inputs in the form of Error and Delta Error. The two inputs will be processed by the fuzzy logic controller (FLC) to get the output value in the form of a PWM signal to control the DC motor. The results of this study indicate that the fuzzy logic control system with the Arduino uno microcontroller can control the rotational speed of the DC motor as desired.


2013 ◽  
Vol 64 (3) ◽  
pp. 143-151
Author(s):  
Farid Bouchafaa ◽  
Mohamed Seghir Boucherit ◽  
El Madjid Berkouk

Voltage source multilevel inverters have become very attractive for power industries in power electronics applications during last years. The main purposes that have led to the development of the studies about multilevel inverters are the generation of output voltage signals with low harmonic distortion; the reduction of switching frequency. A serious constraint in a multilevel inverter is the capacitor voltage-balancing problem. The unbalance of different DC voltage sources of five-level neutral point clamping (NPC) voltage source inverter (VSI) constitutes the major limitation for the use of this new power converter. In order to stabilize these DC voltages, we propose in this paper to study the cascade constituted by three phases five-level PWM rectifier, a clamping bridge and five-level NPC (VSI). In the first part, we present a topology of five-level NPC VSI, and then they propose a model of this converter and an optimal PWM strategy to control it using four bipolar carriers. Then in the second part, we study a five-level PWM rectifier, which is controlled by a multiband hysteresis strategy. In the last part of this paper, the authors study shows particularly the problem of the stability of the multi DC voltages of the inverter and its consequence on the performances of the induction motors (IM). Then, we propose a solution to the problem by employed closed loop regulation using PI regulator type fuzzy logic controller (FLC). The results obtained with this solution confirm the good performances of the proposed solution, and promise to use the inverter in high voltage and great power applications as electrical traction.


Author(s):  
Mohsin A. Koondhar ◽  
Muhammad U. Keerio ◽  
Rameez A. Talani ◽  
Kamran A. Samo ◽  
Muhammad S. Bajwa ◽  
...  

Fuzzy logic controller (FLC) has become popular in the speed control application of DC motors with automatic adjustment function. In this article, the performance of a specific FLC controlled DC motor is studied. The exceed speed is observed with a stabilization time, thus confirming the FLC behavior. Therefore, FLC must be set to obtain the required performance by applying appropriate expert rules, the minimum overshoot and installation time can be maintained within the required values. With the help of FLC, the manual adjustment function is gradually eliminated, and the intelligent adjustment function is at the center position, and the performance is satisfactory. FLC DC motor speed control is implemented in MATLAB environment. The results show that the FLC method has the smallest bypass, smallest transient and steady-state error, and shows higher FLC efficiency as compared with other conventional controllers.


2017 ◽  
Vol 36 (3) ◽  
pp. 867-875
Author(s):  
II Ekpoudom ◽  
IE Archibong ◽  
UT Itaketo

This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil system of the H25 Hitachi gas turbine generator. The turbine generator is required to run at an operating pressure of 1.5bar with the low and the high pressure trip points being 0.78 bar and 1.9 bar respectively. However, the driver DC motor speed drifted from the desired speed of 1450 revolutions per minutes (rpm) to as low as 1414 rpm. It is against this backdrop, that this project work was envisaged to design a controller capable of controlling the speed of the DC motor in order to achieve the desired speed rating of 1450 rpm. In modelling the motor, the transfer function method was used to develop a linear approximation to the actual motor. After computing the total inertia of the motor shaft, the motor model was simulated for the speed response in MATLAB and Simulink environment, and the response showed that the motor attained an actual maximum speed of 1414 rpm at settling time of 0.3 seconds.  Based on expert knowledge of the lube oil system, a fuzzy logic controller was designed and this resulted in the issuance of a control action to correct the actual speed of the motor from 1414 rpm to the desired speed of 1450 rpm.  http://dx.doi.org/10.4314/njt.v36i3.29


2014 ◽  
Vol 521 ◽  
pp. 222-228
Author(s):  
Kai Wang ◽  
Hai Shun Sun ◽  
Yu Hua ◽  
Yuan Liu ◽  
Wei Xing Lin ◽  
...  

The continuous development of alternative energy has put forward higher requirement for electricity transmission. To cope with its fluctuation characteristics, high voltage direct current (HVDC) technology has received more attention. Voltage Source Converter (VSC) based Multi-Terminal High Voltage Direct Current (MTDC) represents the future trend of HVDC technology. This paper mainly focuses on the control strategies of a four-terminal VSC based MTDC power transmission system. The operation characteristic of the system was studied, and the proposed two control strategies, master-slave control strategy and DC voltage droop control strategy, were verified through simulations. The latter control strategy was proved to be performing well under various conditions, including converter station disconnection and faults at AC side of the converter.


Sign in / Sign up

Export Citation Format

Share Document