scholarly journals Improved coagulation and haemostasis in haemophilia with inhibitors by combinations of superFactor Va and Factor VIIa

2016 ◽  
Vol 115 (03) ◽  
pp. 551-561 ◽  
Author(s):  
Andrew J. Gale ◽  
John H. Griffin ◽  
Laurent O. Mosnier ◽  
Vikas Bhat ◽  
Annette von Drygalski

SummaryBypassing inhibitors in haemophilia patients is limited to activated (a) Factor(F)VII products. We introduced “FVa activity augmentation” as another bypassing strategy and studied effects of an engineered FVa variant designated superFVa. Procoagulant and clot stabilising properties of superFVa and recombinant human (rh)FVIIa, either alone or in combination, were studied in thrombin generation and clot lysis assays in normal human plasma (NHP) with or without anti-FVIII inhibitors, in haemophilia plasma, and in FVIII-deficient mice or in wild-type mice with anti-FVIII inhibitors. SuperFVa was as effective as rhFVIIa to improve thrombin generation or clot lysis. Furthermore, procoagulant effects were significantly enhanced when these compounds were combined. RhFVIIa at 40 nM (a therapeutic concentration) improved thrombin generation mildly, but markedly improved thrombin generation when combined with a low concentration (e. g. 3 nM) of superFVa. In clot lysis studies, the concentration of rhFVIIa to normalise clot lysis times could be reduced by 100-fold (e. g. from 40 nM to 0.4 nM) when combined with a low concentration (0.37 nM) of superFVa. In haemostasis studies of FVIII-deficient mice, blood loss was dose-dependently reduced by either superFVa or rhFVIIa. SuperFVa (200 U/kg) corrected mean blood loss indistinguishably from rhFVIII. Blood loss correction by rhFVIIa was greatly improved when combined with superFVa. Similar blood loss correction results were observed for therapies in wild-type mice after infusion with anti-FVIII inhibitors. Thus, superFVa may be an effective procoagulant agent in the setting of haemophilia with inhibitors and it merits further evaluation for new bypassing strategies.Supplementary Material to this article is available online at www.thrombosis-online.com.

Blood ◽  
1996 ◽  
Vol 88 (3) ◽  
pp. 870-876 ◽  
Author(s):  
HR Lijnen ◽  
P Carmeliet ◽  
A Bouche ◽  
L Moons ◽  
VA Ploplis ◽  
...  

Abstract Homozygous plasminogen-deficient (Plg-/-) mice had a significantly reduced thrombolytic capacity toward intravenously injected 125I-fibrin labeled plasma clots prepared from Plg-/- murine plasma (9% +/- 3% lysis after 8 hours; (mean +/- SEM, n = 6), as compared with 82% +/- 8% in wild-type mice; P < .0001). Bolus injection of 1 mg purified murine plasminogen in 10- to 17-week-old Plg-/- mice increased the plasminogen antigen and activity levels at 8 hours to normal levels (130 +/- 5 micrograms/mL). Plasminogen administration was associated with significant restoration of thrombolytic potential (64% +/- 7% spontaneous clot lysis; P < .0001 versus lysis without plasminogen injection). Bolus injection of 1 mg plasminogen in homozygous tissue- type plasminogen activator-deficient (t-PA-/-) mice doubled the plasminogen antigen and activity levels after 8 hours and increased 125I-fibrin clot lysis at 8 hours from 13% +/- 3% to 34% +/- 5% (P = .008). Fibrinogen, t-PA antigen and alpha 2-antiplasmin activity levels after 8 hours were not significantly different in the groups with or without plasminogen injection. Injection of plasminogen induced a variable increase (on average 7- to 10-fold) of PAI-1, but no correlation with the extent of spontaneous clot lysis was observed. Histopathologic examination at the end of the experiments revealed that fibrin deposition in the liver of Plg-/- mice was slightly reduced 8 hours after bolus plasminogen injection (P = .007) and markedly reduced after 24 hours (P < .0001). Plasminogen antigen levels in liver extracts were comparable with those found in wild-type mice at 8 hours (130 +/- 20 versus 110 +/- 15 ng/mg protein) and decreased to 25 +/- 3.2 ng/mg protein at 24 hours. Thus, restoration of normal plasminogen levels in Plg-/- mice normalized the thrombolytic potential toward experimentally induced pulmonary emboli, and resulted in removal of endogenous fibrin deposits within 24 hours.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1751-1751
Author(s):  
Samit Ghosh ◽  
Mirella Ezban ◽  
Egon Persson ◽  
Ulla Hedner ◽  
Usha Pendurthi ◽  
...  

Abstract High doses of recombinant factor VIIa (FVIIa) have been found to bypass factor IX or factor VIII deficiency and ameliorate the bleeding problems associated with hemophilia patients with inhibitors. Recent studies show that FVIIa also acts as an effective hemostatic agent in other categories of patients, and thus has become a promising candidate for prevention and treatment of excessive bleeding associated with many other diseases/injuries. Although recombinant FVIIa has proven to be a very effective and safe drug in the treatment of bleeding episodes in hemophilia patients with inhibitors and other indications, a small fraction of patients may be refractory to FVIIa treatment. The reason for this is unclear at present, but it is possible that administration of very high pharmacological doses of FVIIa or use of genetically modified FVIIa molecules with increased potencies may circumvent the problem. The most dramatic effect on the activity (a 40-fold increase in proteolytic activity) of FVIIa was obtained by occupying the corresponding positions in thrombin/factor IXa for those positions 158, 296 and 298 of FVIIa (FVIIaDVQ). A FVIIa mutant in which the hydrophobic residue Met 298 was replaced with Gln (FVIIaQ) has 7-fold higher proteolytic activity. In the present study, we investigated the interactions of FVIIaQ and FVIIaDVQ with plasma inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin (AT) in solution and at the vascular endothelium. Both TFPI and AT/heparin inhibited the FVIIa variants more rapidly than the wild-type FVIIa in the absence of TF. In the presence of TF, TFPI, TFPI-Xa and AT/heparin inhibited FVIIa and FVIIa variants at similar rates. Although the wild-type FVIIa failed to generate significant amounts of factor Xa on unperturbed endothelial cells, FVIIa variants, particularly FVIIaDVQ, generated a substantial amount of factor Xa on unperturbed endothelium (1 nM of factor VIIa generated 0.3 ± 0.15 nM factor Xa/h whereas FVIIaQ and FVIIaDVQ generated 1.26 ± 0.1 nM/h and 9.48 ± 1.32 nM/h, respectively). Annexin V fully attenuated the FVIIa-mediated activation of factor X on unperturbed endothelial cells whereas anti-TF IgG had no effect. On stimulated HUVEC, FVIIa and FVIIa variants activated factor X at similar rates (30–40 nM/h). AT/heparin and TFPI-Xa inhibited the activity of FVIIa and FVIIa variants bound to endothelial cell TF in a similar fashion. AT inhibition of FVIIa bound to stimulated endothelial cells requires exogenous heparin. Interestingly, TFPI-Xa was found to inhibit the activities of both FVIIa and FVIIa analogs bound to unperturbed endothelial cells. Despite significant differences observed in factor Xa generation on native endothelium exposed to FVIIa and FVIIa analogs, no differences were found in thrombin generation when cells were exposed to FVIIa or FVIIa analogs under plasma mimicking conditions, probably due to limited availability of anionic phospholipids and/or putative factor Xa and Va binding sites on their cell surface. Over all, our present data suggest that although FVIIa variants may generate factor Xa on native endothelium, the resultant factor Xa does not lead to enhanced thrombin generation on native endothelium compared to FVIIa. These data should reduce potential concerns about whether the use of FVIIa variants triggers unwanted coagulation on native endothelium, and may facilitate the development of FVIIa analogs as effective therapeutic agents in near future for treatment of patients with bleeding disorders.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3386-3386
Author(s):  
Peter L. Gross ◽  
Nima Vaezzadeh ◽  
Lori Ivicic ◽  
Ran Ni ◽  
Bruno Esposito ◽  
...  

Abstract Introduction: Microparticles derived from leukocytes contribute to fibrin formation at thrombi in vivo and factor VIII-deficient (FVIII) mice treated with an agent that elevates their microparticles have decreased bleeding. A novel therapy for hemophilia patients with inhibitors is needed. We evaluated whether microparticles generated in vitro could improve hemostasis in FVIII mice. Methods: Mouse CD11b positive monocytes, isolated by MACS, or cultured monocytic cells (WEHI274.1) were treated with the calcium ionophore A23187. The resulting microparticles (isolated by differential centrifugation, and defined as CD18 positive events less than 1 μm diameter) or PIPES buffer were infused intravenously into FVIII-deficient mice (B6.129S4-F8tm1Kaz) or control wild type B6.129 mice prior to evaluation. The amount of platelets in laser-generated thrombi in cremaster muscle arterioles was evaluated using high-speed intravital fluorescence microscopy. The amount of hemoglobin shed from a 2 mm tail tip amputation measured blood loss. Results: Infusion of MPs at doses above 1000/g resulted in the death of wild type mice; FVIII-deficient mice tolerated MPs at doses up to 4000/g. Blood loss after tail clip in FVIII-deficient mice was 6-fold higher than blood loss from wild type mice. Blood loss after tail clip in FVIII-deficient mice was reduced to normal after the infusion of MPs at concentrations as low as 400/g. MPs, at 400/g, from CD11b positive cells isolated from wild type, FVIII-deficient mice or PSGL-1-deficient mice all similarly reduced blood loss after tail clip in FVIII-deficient mice. The biological half life of MP effect on tail-bleeding was 3 hours. Platelet accumulation in cremaster arteriolar thrombi was impaired in FVIII-deficient mice. Infusion of MPs at a concentration of 1000/g normalized platelet accumulation, but infusion of MPs at a lower concentration (400/g) did not. Conclusion: Abnormal hemostasis in FVIII-deficient mice can be temporarily reversed by the infusion of in vitro generated monocyte-derived MPs, including MPs derived from monocytes from FVIII-deficient or PSGL-1-deficient mice. The dose whereby MPs normalize FVIII-deficient mice is different between the hemostasis and thrombosis models. To explore whether P-selectin at injuries is required for the effect of MPs, we have generated by cross-breeding FVIII/P-selectin double deficient mice. These mice are born at expected mendelian frequency. Two of 20 male FVIII/P-selectin double deficient mice had spontaneous bleeding at 8 weeks of age, one in the thigh and one from the ear. FVIII/P-selectin double deficient mice also have prolonged tail bleeding times, which will serve as a model for testing the P-selectin targeting of microparticles.


Author(s):  
Rida Asad Malik ◽  
Ji Zhou ◽  
James Fredenburgh ◽  
Tammy K. Truong ◽  
Jeffrey R Crosby ◽  
...  

Histidine-rich glycoprotein (HRG) is an abundant plasma protein that binds factor (F) XIIa and inhibits FXII autoactivation and FXIIa-mediated activation of FXI. Polyphosphate (polyP), a potent procoagulant released from activated platelets, may serve as a physiological activator of the contact system. Previously, we showed that HRG binds DNA and neutralizes its procoagulant activity. Consequently, we set out to determine whether the capacity of HRG to bind polyanions enables it to regulate polyP-induced thrombosis. In a plate-based assay, immobilized polyP bound HRG, FXII, and FXIIa in a zinc-dependent manner. Basal and polyP-induced thrombin generation were greater in plasma from HRG-deficient mice than in plasma from wild-type mice. Intraperitoneal injection of polyP shortened the activated partial thromboplastin time, enhanced thrombin generation, increased thrombin-antithrombin (TAT) levels, reduced lung perfusion, and promoted pulmonary fibrin deposition to a greater extent in HRG-deficient mice than in wild-type mice, effects that were abrogated with FXII knockdown. Therefore, HRG attenuates the procoagulant and prothrombotic effects of polyP in a FXII dependent manner by modulating the contact system.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 17-17
Author(s):  
Annette Von Drygalski ◽  
Thomas J. Cramer ◽  
John H. Griffin ◽  
Andrew J. Gale ◽  
Laurent O. Mosnier

Abstract Abstract 17 Approximately 1/3rd of hemophiliacs with inhibitors fail treatment with FVIIa-based bypassing agents. New intervention strategies are urgently needed. Activated FV (FVa) enhances thrombin formation by the prothrombinase complex, but is rapidly inactivated by activated protein C (APC). Mutation of the APC cleavage site, R506Q (FVLeiden), is prothrombotic and improves hemostasis in humans and mice with hemophilia. We therefore engineered FV-derivatives with additional mutations of the APC cleavage sites (Arg506/306/679Gln) and introduced a disulfide bond (Cys609-Cys1691) connecting the A2 and A3 domains (FV(A2-SS-A3)). Introduction of the disulfide bond prevents the dissociation of the A2 domain as the final irreversible step of inactivation. All FV mutants were activated with thrombin prior to experimentation. Procoagulant properties of FVa mutants were studied in vitro and in hemophilia mouse models. Mutation of all three APC cleavage sites (Arg506/306/679) and addition of the disulfide bond yielded “superFVa” that had 2- to 3-fold higher specific activity compared to recombinant human (rh)FVa, rhFVa(A2-SS-A3), rhFVaLeiden or rhFVaLeiden(A2-SS-A3) in purified prothrombinase assays and in thrombin generation assays in FV- and FVIII-deficient plasma. superFVa corrected the aPTT at 20-fold lower concentrations compared to rhFVa in FV-deficient plasma. superFVa was highly resistant to inactivation by APC in purified prothrombinase assays and in thrombin generation assays in FV-deficient plasma. While superFVa retained 90–100% activity in the presence of APC, FVa(A2-SS-A3) and FVaLeiden(A2-SS-A3) lost ∼90% and ∼40% of their activities, respectively. In FVIII-deficient mice, superFVa reduced bleeding significantly compared to rhFVa in a dose dependent fashion after tail clip (n=10–17 per group). Blood loss was determined separately for the first and second 10 min after tail clip to study the effects of FVa mutants on re-bleeding. FVa mutants were dosed at equal activities determined in prothrombinase assays (expressed in arbitrary units). At low doses of intravenous FVa mutants (40 units), mean blood loss during the first 10 min after clip in FVIII-deficient mice was significantly decreased following injection of superFVa compared to saline (6.5 μL/g vs. 15.5 μL/g; p=0.02), whereas blood loss following injection of rhFVa was not (16.7 μL/g). At high doses of FVa mutants (100 units), superFVa and rhFVa were effective in reducing blood loss in FVIII-deficient mice following intravenous injection. Mean blood loss with superFVa was further improved to 3.9 μl/g, and with rhFVa was 8.2 μl/g. Both results were significant compared to mean blood loss following saline injection (15.5 μL/g; p≤0.05). FVIII-deficient mice were considered protected at 10 min when blood loss was ≤ 9.9 μL/g, which is the mean plus 3 SDs derived from tail bleeding of wild-type BalbC mice. While only ∼45% of FVIII-deficient mice injected with saline or rhFVa (40 units) were protected, protection against bleeding increased to 83% with superFVa (40 units). When 100 units of FVa mutants were given, protection with both mutants (superFVa or FVa) was ≥ 90%. Of note, during the second 10 min and therefore during the combined 20 min of bleeding, only superFVa at high dose (100 units) effectively reduced bleeding. Mean blood loss in FVIII-deficient mice following intravenous superFVa was 11.7 μL/g during the 2nd 10 minutes of bleeding, compared to 20.2 μL/g with saline (p=0.02). Our results indicate that molecular engineering of FV, which combined two alterations for improving thrombin generation (increased specific activity and APC resistance), provided a FVa-mutant, superFVa, with unique procoagulant properties. In vivo, superFVa not only decreased initial bleeding, but also significantly decreased re-bleeding, indicating that superFVa efficiently improved clot formation and also enhanced clot stabilization. These results warrant more in depth characterization of the potential therapeutic benefits of superFVa as a novel bypassing strategy in hemophilia patients with inhibitors. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M.A Riederer ◽  
L Crescence ◽  
E Caroff ◽  
F Hubler ◽  
L Panicot-Dubois ◽  
...  

Abstract Background Combination of a P2Y12 receptor (P2Y12R) antagonist (clopidogrel, prasugrel, ticagrelor) with aspirin is the recommended standard of care for patients with acute coronary syndrome. Selatogrel is a reversible and potent antagonist of P2Y12R. Interestingly, in an experimental thrombosis model in rat, at equivalent antithrombotic effect, blood loss was lower in the presence of selatogrel, compared with clopidogrel or ticagrelor. Purpose To characterise the lower risk of bleeding previously observed with selatogrel Methods Mechanistic studies were performed to profile laser-induced thrombosis in wild-type and P2Y12 deficient mice with real-time intravital microscopy. Ticagrelor and clopidogrel were used as selatogrel comparators. Results Selatogrel, ticagrelor and clopidogrel dose-dependently inhibited laser-induced platelet thrombus formation. At maximal antithrombotic effect, only small mural platelets aggregates, corresponding to the haemostatic seals, were present. The phenotype of these haemostatic seals depended on the P2Y12R antagonist used. In the presence of clopidogrel or ticagrelor, the stability of haemostatic seals was reduced. In contrast, in the presence of selatogrel, the apparent stability was not disturbed. Moreover, equivalent antithrombotic dosing regimens of ticagrelor and clopidogrel interfered with laser-induced calcium mobilisation in the endothelium, restricted subsequent neutrophil adhesion and thus reduced fibrin-mediated stabilisation of the haemostatic seals in wild type mice. The effects of ticagrelor were also observed in P2Y12R-deficient mice, indicating that the effects are P2Y12R independent and off-target. In contrast, an equivalent antithrombotic dosing regimen of selatogrel did not interfere with the process of haemostasis in wild-type or P2Y12R-deficient mice. The degree of interference with the stability of the haemostatic seals correlated with the blood loss profile. The dosing regimens of clopidogrel and ticagrelor, corresponding to the equivalent antithrombotic effects, induced a more pronounced increase in blood loss than that observed with selatogrel. Conclusion Our data offer a novel mechanistic explanation for the differences in bleeding risk of clopidogrel, ticagrelor and selatogrel. Clopidogrel and ticagrelor were found to interfere with haemostasis due to off-target activities. In contrast, selatogrel did not interfere with haemostasis in wild-type and P2Y12-deficient mice, inferring that the process of haemostasis, as defined by formation of haemostatic seals, is independent of P2Y12R. In addition, our data emphasize that the absence of interference with haemostasis is paramount to preserve the advantage of P2Y12R antagonism. Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Idorsia Pharmaceuticals Ltd. Allschwil, Switzerland


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3239-3239
Author(s):  
Stuart Bunting ◽  
Lening Zhang ◽  
Lin Xie ◽  
Sherry Bullens ◽  
Rajeev Mahimkar ◽  
...  

Abstract Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the Factor VIII coagulation protein (FVIII). Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma derived FVIII. Recently, Nathwani et al demonstrated in preclinical and clinical studies sustained expression of coagulation factor IX using AAV8 technology to deliver the human gene to the liver, driven by a liver specific promoter. The same group demonstrated FVIII expression in mice and primates using a modified B-domain truncated form of FVIII delivered in an AAV8 capsid. We have made an AAV5 construct containing a B-domain deleted FVIII gene (AAV5-SQ) with a liver specific promoter and evaluated it in a double knockout mouse model of hemophilia. The double knockout mice (DKO) were created by crossing factor VIII deficient mice with RAG2 deficient mice (RAG2 KO). The RAG2 KO mice lacked the ability to mount an adaptive immune response thereby allowing sustained expression of a human protein without the development of an antibody response. Eight week old male DKOs were randomly distributed into three groups, twenty per group, and treated via a single IV injection with either vehicle, or AAV5-SQ at 2 x 1013 or 1 x 1014 vg/kg. C57BL/6J mice comprised a fourth group and were treated with vehicle via a single IV injection to demonstrate wild type bleeding times and blood loss. Bleeding times and blood loss were assessed in these mice 8 weeks post-dose, at 16 weeks of age. In addition, forty 16 week old DKO mice were randomly divided into two groups and treated with a single IV injection of rhFVIII-SQ protein (rhSQ, Xyntha®) at either 50 or 200 IU/kg. Bleeding times were assessed in these mice 30 minutes post-dose, at 16 weeks of age. Eight weeks post dosing with either AAV5-SQ or vehicle, the tail bleeding time and blood loss were measured following transection of the tip of the tail for evaluation of the functional efficacy of AAV5-SQ gene therapy. Wild-type mice receiving vehicle had a mean of 0.040 ± 0.073 g blood loss and 5.11 ± 5.61 min bleeding time. DKO mice treated with vehicle had a mean blood loss and bleeding time of 0.741 ± 0.207 g and 28.96 ± 1.40 min, respectively. Mice receiving AAV5-SQ at 2x1013 vg/kg showed significantly reduced blood loss (0.387 ± 0.384 g, p=0.0008 vs DKO+ vehicle; p=0.0003 vs WT) and bleeding time (17.12 ± 11.58 min, p=0.00005 vs DKO+ vehicle; p=0.0013 vs WT) while 1x1014 vg/kg AAV5-SQ treatment corrected blood loss and bleeding times to wild-type levels (0.104 ± 0.203 g [p=0.192 vs WT, p= 5.49x10-12 vs DKO + vehicle] and 5.58 ± 9.32 mins [p=0.847 vs WT, p= 1.75x-13 vs DKO + vehicle], respectively). The effect of AAV5-SQ treatment on blood loss and bleeding time was comparable to the effects of rhSQ. DKO mice receiving 50 IU/kg of rhSQ had a mean blood loss and bleeding time of 0.492 ± 0.297 g and 18.14 ± 9.39 min, respectively, which was not significantly different from mice receiving AAV5-SQ at 2x1013 (p=0.343 for blood loss, p=0.760 for bleeding time). DKO mice receiving 200 IU/kg of rhSQ had a mean blood loss and bleeding time of 0.134 ± 0.191 g and 4.29 ± 6.16 min, respectively, which was not significantly different from mice receiving AAV5-SQ at 1x1014 (p=0.635 for blood loss, p=0.608 for bleeding time). In a separate experiment, 4 groups of DKO mice, n=10 per group, were injected with either vehicle, AAV5-SQ at 2x1013, AAV5-SQ at 2x1014 vg/kg or rhSQ at 50 IU/kg. Blood was collected 8 weeks after AAV5-SQ treatment or 5 and 30 min after rhSQ for evaluation of plasma hFVIII-SQ protein levels and activity. Expressed hFVIII-SQ levels were measured by electrochemiluminescence assay. Factor VIII-SQ protein levels at 2x1013 vg/kg AAV5-SQwere 46.8±44.0 ng/ml and 355±166ng/ml at 2x1014 vg/kg. At 50 IU/kg of rhSQ the plasma protein levels were 79.1±11.3 ng/ml at 5 min and 44.7±16.6 ng/ml at 30min post dosing. Western blot analysis of the plasma from these mice showed the expressed protein to be similar in size to rhSQ. In summary, AAV5-SQ injected into DKO hemophilic mice resulted in a dose dependent expression of B-domain deleted FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by AAV5-SQ or following exogenous administration of B-domain deleted FVIII. Disclosures Bunting: BioMarin Pharmaceutical: Employment. Zhang:BioMarin Pharmaceutical: Employment. Xie:BioMarin Pharmaceutical: Employment. Bullens:BioMarin Pharmaceutical: Employment. Mahimkar:BioMarin Pharmaceutical: Employment. Fong:BioMarin Pharmaceutical: Employment. Sandza:BioMarin Pharmaceutical: Employment. Colosi:BioMarin Pharmaceutical: Employment. Long:BioMarin Pharmaceutical: Employment. Vehar:BioMarin Pharmaceutical: Employment. Carter:BioMarin Pharmaceutical: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2383-2383
Author(s):  
Nabil K Thalji ◽  
Sunita Patel-Hett ◽  
Reema Jasuja ◽  
Joachim Fruebis ◽  
Debra Pittman ◽  
...  

Abstract Oral anticoagulants are the mainstay of treatment for prothrombotic disorders. The emerging oral factor Xa (FXa) inhibitors, which include rivaroxaban and apixaban, have been shown to be highly effective anticoagulants in several clinical scenarios, including venous thromboembolism and non-valvular atrial fibrillation. Compared to warfarin, direct FXa inhibitors have less variable pharmacokinetics, may not require routine monitoring of coagulation parameters, and have comparable to a somewhat lower bleeding risk. Despite these advantages, no approved strategy has been developed to reverse the anticoagulant effects of these drugs in the event of life-threatening bleeding or emergent need for surgery. This represents an urgent unmet clinical need. Our group has recently developed a panel of FXa mutants that are more zymogen-like than wild-type (wt)-FXa. These “zymogen-like” FXa variants have lower activity in in vitro assays compared to wt-FXa due to impaired active site maturation. Furthermore, the variants have longer plasma half-lives (>30 minutes) in vitro compared to wt-FXa (1-2 minutes) due to diminished reactivity with antithrombin III (ATIII) and tissue factor pathway inhibitor (TFPI). Remarkably however, binding to FVa rescues the activity of these zymogen-like FXa variants and as a result they are highly effective procoagulants in vivo in the setting of hemophilia (Nat. Biotech; 2011, 29:1028-33). We hypothesized that these variants could also be effective procoagulants to overcome the effects of direct FXa inhibitors. Furthermore, since direct FXa inhibitors bind the FXa active site, we expect them to compete with ATIII and TFPI for FXa binding and prolong their half-lives. We tested both of these hypotheses in in vitro coagulation studies and in vivo hemostasis models. Rivaroxaban dose-dependently inhibited thrombin generation in thrombin generation assays (TGA) when added to normal human plasma. Specifically, 500 nM rivaroxaban, the expected therapeutic steady-state plasma concentration, decreased peak thrombin generation to ∼10% of normal, and addition of 3 nM of the FXa zymogen-like variant FXaI16L restored peak thrombin generation to 105% of normal. Higher concentrations of rivaroxaban (2.5 µM) completely abrogated thrombin generation in this assay, but 10 nM FXaI16L restored thrombin generation to 72% of normal under these conditions. We compared these data to results obtained with other proposed reversal strategies. Gla-domainless, catalytically inactive FXa (GD-FXaS195A), which has been shown to reverse the effects of rivaroxaban by scavenging the inhibitor, restored thrombin generation in the presence of 500 nM rivaroxaban, but required high concentrations (1 µM; >300-fold greater than FXaI16L) to be effective. In addition, activated prothrombin complex concentrates (FEIBA), which have been shown to have some ex vivo efficacy, were ineffective under our assay conditions. In tail-clip hemostasis studies in mice, rivaroxaban dose-dependently increased blood loss, with 50 mg/kg rivaroxaban resulting in 217% of normal blood loss. Addition of FXaI16L (200 mg/kg) reduced rivaroxaban-induced blood loss to 141% of normal. To examine the effect of rivaroxaban on the half-life of FXa, we pre-incubated FXaI16L or wt-FXa with or without rivaroxaban in normal human plasma and then performed TGA experiments after various incubation times. When wt-FXa or FXaI16L were pre-incubated in plasma in the absence of rivaroxaban, their half-lives were 4.6 minutes and 1.37 hours, respectively. Remarkably, when wt-FXa or FXaI16L were incubated in plasma in the presence of 500 nM rivaroxaban, their respective half-lives were prolonged to 9.4 hours (123-fold increase) and 18.1 hours (13.2-fold increase). These results suggest that a zymogen-like FXa variant, FXaI16L, can reverse the effects of rivaroxaban in vitro and in vivo. Furthermore, FXaI16L is a bypassing agent that only requires catalytic amounts of protein, in contrast to scavengers or “true” antidotes like GD-FXaS195A that require stoichiometric concentrations. This indicates that much lower quantities of FXaI16L may be effective in vivo. We also showed that rivaroxaban dramatically prolongs the half-life of FXa in plasma, possibly by competing with ATIII and TFPI for FXa binding. This work provides a starting point for the development of a long half-life reversal strategy for the emerging FXa inhibitors. Disclosures: Patel-Hett: Pfizer: Employment. Jasuja:Pfizer: Employment. Fruebis:Pfizer: Employment. Pittman:Pfizer: Employment. Camire:Pfizer: Consultancy, Patents & Royalties, Research Funding; Alnylam: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3575-3575 ◽  
Author(s):  
Marisa Ninivaggi ◽  
Hilde Kelchtermans ◽  
Marijke Kuipers ◽  
Bianca Hemmeryckx ◽  
Johan Heemskerk ◽  
...  

Abstract Introduction The occurrence of venous thromboembolism is strongly age-dependent and has a substantial morbidity and mortality. While the incidence is<1 per 1000 per year up to an age of 50, it thereafter increases rapidly end exponentially. The cause of this increased risk is still unclear, however immobility, decreased muscular tone, aging of the veins and the presence of other or more risk factors and diseases than young individuals all contribute to this increased risk. Whether age-induced circulatory changes and/or increased levels of blood coagulation levels are responsible for the increased thrombogenicity remains unclear. We recently developed a method in which these problems were overcome enabling the measurement of thrombin generation (TG) in a small aliquot of blood. The advantage of the use of this whole blood assay is that the small volume enables us to apply this assay to mice and the use of whole blood enables us to include the effect of blood cells on TG. Objectives By modifying the classic plasma Calibrated Automated Thrombogram (CAT) assay, we were able of measuring TG in whole blood in mice. The objective was to validate this assay in mice blood and to examine the rate and extent TG in a mouse model of premature aging. Methods TG was assayed in 20- to 28-week-old brain and muscle ARNT-like protein-1 (Bmal1)-deficient (knockout, KO) mice and wild-type (WT) littermates. The Bmal1-KO mice have an impaired circadian behavior and demonstrate loss of rhythmicity in the expression of their target genes. They are known to have a reduced lifespan and display symptoms of premature aging. Mice blood samples were taken from the orbital sinus using a capillary anticoagulated with citrate (3.8%). Coagulation and therefore TG was initiated with a solution containing calcium, tissue factor (TF) and a thrombin specific substrate. Varying the TF concentration revealed an optimal of 0.5 pM. At the end of the TG assay, the samples were fixated, prepared for and analysed by scanning electron microscopy (SEM). Results The intra-assay variations (CV%) in mice blood of the endogenous thrombin potential (ETP), peak height, lagtime, time-to-peak and velocity index were 10% or less (n=24). The whole blood TG test showed that Bmal1-KO mice have a significantly (p<0.001) higher ETP (437±7 nM.min; mean±SD, n=5) when compared with wild type mice (ETP=220±45 nM.min; mean±SD, n=5). The peak heights also differed significantly (p=0.027). However, differences in lagtime, TTP and velocity index were not significantly different (p-values were respectively 0.45, 0.15 and 0.74). Applying SEM we found that Bmal1 deficient mice display a more dense fibrin network with smaller pores compared to WT-mice. Conclusions The whole blood TG assay in mice blood revealed to be reproducible and we demonstrated that aging Bmal1-KO mice have a hypercoagulable state when compared with WT mice indicating that a higher thrombotic risk in elderly is partially due to a more procoagulation state. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 120 (03) ◽  
pp. 392-399 ◽  
Author(s):  
Christian Fenger-Eriksen ◽  
Alexander D'Amore Lindholm ◽  
Lisbeth Krogh ◽  
Tobias Hell ◽  
Martin Berger ◽  
...  

Abstract Objective Craniosynostosis surgery in small children is very often associated with a high blood loss. Tranexamic acid (TXA) reduces blood loss during this procedure, although the potential underlying coagulopathy in these children is not known in detail. Objective was to determine the nature of any coagulopathy found during and after craniosynostosis surgery and to characterize the effect of TXA on fibrin clot formation, clot strength, and fibrinolysis. Materials and Methods Thirty children received either TXA (bolus dose of 10 mg/kg followed by 8 hours continuous infusion of 3 mg/kg/h) or placebo. Dynamic whole blood clot formation assessed by thromboelastometry, platelet count, dynamic thrombin generation/thrombin-antithrombin, clot lysis assay, and fibrinogen/factor XIII (FXIII) levels were measured. Additionally, clot structure was investigated by real-time live confocal microscopy and topical data analysis. Results Increased ability of thrombin generation was observed together with a tendency toward shortened activated partial thromboplastin time and clotting time. Postoperative maximum clot firmness was higher among children receiving TXA. FXIII decreased significantly during surgery in both groups.Resistance toward tissue plasminogen activator-induced fibrinolysis was higher in children that received TXA, as evidenced by topical data analysis and by a significant longer lysis time. Fibrinogen levels were higher in the TXA group at 24 hours. Conclusion A significant coagulopathy mainly characterized by changes in clot stability and not parameters of thrombin generation was reported. Tranexamic acid improved clot strength and reduced fibrinolysis, thereby avoiding reduction in fibrinogen levels.


Sign in / Sign up

Export Citation Format

Share Document