Monocyte-Derived Microparticles Improve Hemostasis in Factor VIIIDeficient Mice: Exploring the Role of PSGL-1/P-Selectin.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3386-3386
Author(s):  
Peter L. Gross ◽  
Nima Vaezzadeh ◽  
Lori Ivicic ◽  
Ran Ni ◽  
Bruno Esposito ◽  
...  

Abstract Introduction: Microparticles derived from leukocytes contribute to fibrin formation at thrombi in vivo and factor VIII-deficient (FVIII) mice treated with an agent that elevates their microparticles have decreased bleeding. A novel therapy for hemophilia patients with inhibitors is needed. We evaluated whether microparticles generated in vitro could improve hemostasis in FVIII mice. Methods: Mouse CD11b positive monocytes, isolated by MACS, or cultured monocytic cells (WEHI274.1) were treated with the calcium ionophore A23187. The resulting microparticles (isolated by differential centrifugation, and defined as CD18 positive events less than 1 μm diameter) or PIPES buffer were infused intravenously into FVIII-deficient mice (B6.129S4-F8tm1Kaz) or control wild type B6.129 mice prior to evaluation. The amount of platelets in laser-generated thrombi in cremaster muscle arterioles was evaluated using high-speed intravital fluorescence microscopy. The amount of hemoglobin shed from a 2 mm tail tip amputation measured blood loss. Results: Infusion of MPs at doses above 1000/g resulted in the death of wild type mice; FVIII-deficient mice tolerated MPs at doses up to 4000/g. Blood loss after tail clip in FVIII-deficient mice was 6-fold higher than blood loss from wild type mice. Blood loss after tail clip in FVIII-deficient mice was reduced to normal after the infusion of MPs at concentrations as low as 400/g. MPs, at 400/g, from CD11b positive cells isolated from wild type, FVIII-deficient mice or PSGL-1-deficient mice all similarly reduced blood loss after tail clip in FVIII-deficient mice. The biological half life of MP effect on tail-bleeding was 3 hours. Platelet accumulation in cremaster arteriolar thrombi was impaired in FVIII-deficient mice. Infusion of MPs at a concentration of 1000/g normalized platelet accumulation, but infusion of MPs at a lower concentration (400/g) did not. Conclusion: Abnormal hemostasis in FVIII-deficient mice can be temporarily reversed by the infusion of in vitro generated monocyte-derived MPs, including MPs derived from monocytes from FVIII-deficient or PSGL-1-deficient mice. The dose whereby MPs normalize FVIII-deficient mice is different between the hemostasis and thrombosis models. To explore whether P-selectin at injuries is required for the effect of MPs, we have generated by cross-breeding FVIII/P-selectin double deficient mice. These mice are born at expected mendelian frequency. Two of 20 male FVIII/P-selectin double deficient mice had spontaneous bleeding at 8 weeks of age, one in the thigh and one from the ear. FVIII/P-selectin double deficient mice also have prolonged tail bleeding times, which will serve as a model for testing the P-selectin targeting of microparticles.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aderonke Sofoluwe ◽  
Marc Bacchetta ◽  
Mehdi Badaoui ◽  
Brenda R. Kwak ◽  
Marc Chanson

Abstract Neutrophils are the first immune cells to kill invading microbes at sites of infection using a variety of processes, including the release of proteases, phagocytosis and the production of neutrophil extracellular traps (NETs). NET formation, or NETosis, is a specific and highly efficient process, which is induced by a variety of stimuli leading to expulsion of DNA, proteases and antimicrobial peptides to the extracellular space. However, uncontrolled NETosis may lead to adverse effects and exert tissue damage in pathological conditions. Here, we show that the ATP channel pannexin1 (Panx1) is functionally expressed by bone marrow-derived neutrophils (BMDNs) of wild-type (WT) mice and that ATP contributes to NETosis induced in vitro by the calcium ionophore A23187 or phorbol 12-myristate 13-acetate (PMA). Interestingly, neutrophils isolated from Panx1−/− mice showed reduced and/or delayed induction of NETosis. Brilliant blue FCF dye (BB-FCF), a Panx1 channel inhibitor, decreased NETosis in wild-type neutrophils to the extent observed in Panx1−/− neutrophils. Thus, we demonstrate that ATP and Panx1 channels contribute to NETosis and may represent a therapeutic target.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1763-1763
Author(s):  
Wenche Jy ◽  
Jaehoon Bang ◽  
Loreta Bidot ◽  
Andrew Lin ◽  
Joaquin J. Jimenez ◽  
...  

Abstract BACKGROUND: The potential roles of cell derived microparticles (MP) such as those derived from platelets (PMP), endothelium (EMP), leukocytes (LMP), and red cells (RMP) have been receiving increasing attention in disorders of hemostasis/thrombosis and inflammation and they are emerging as valuable biomarkers. However among these MP, little is known about RMP. Our recent clinical studies indicate that RMP play a role in hemostasis and thrombosis in patients with thrombocytopenia and in thrombocytosis. However, the phenotypes and procoagulant activity of their subspecies remain unknown. We report evidence for heterogeneity of RMP following differential centrifugation. METHODS: RMP were prepared by exposure of washed RBC to the calcium ionophore, A23187, and the RBC were removed by low-speed centrifugation. The RMP were washed twice at 20,000xg for 15 min. Procoagulant activity of RMP was measured by the calibrated automated thrombogram (CAT) system (Hemker et al Pathophysiol Haemost Thromb.2002;32:249) using thrombin substrate Z-Gly-Gly-Arg-AMC on a fluorescence plate reader. The lag time and peak height (nM) of thrombin generation were recorded. Markers used for labeling RMP were PE-labeled anti-glycophorin (GlyP), FITC-anti-tissue factor (TF), FITC-annexin V (AnV), and/or FITC-lectin Ulex europeaus I (Ulex). RESULTS: In thrombin generation assay, RMP induced a long lag time (24±3 min) but high thrombin peak (330±37 nM). These data were consistent with the flow cytometric finding that RMP carried very little TF (<0.1%) but very high AnV binding (88±6%). By high speed centrifugation (15,000xg for 10 min), two populations of RMP were studied: the larger RMP in the pellet expressed GlyP, AnV and Ulex while the smaller or lighter RMP remaining in the supernatant, did not express GlyP and AnV but do express Ulex. The smaller RMP accounted for 30–40% of total Ulex+ RMP. These two subspecies (large and small) of RMP showed distinct thrombin generation profiles. The lag time and peak height of thrombin generation for large RMP (GlyP+/AnV+/Ulex+) was 23–28 min and 300–335 nM, respectively, which is close to values of whole RMP. On the other hand, the smaller RMP (Ulex+/GlyP−/AnV−) produced much longer lag time (31–38 min) and lower peak (60–75 nM), indicating that the majority of the procoagulant activity of RMP is associated with larger RMP. SUMMARY: The present study demonstrates that RMP are rich in anionic phospholipids and effective in generating thrombin in vitro. We have identified 2 distinct subpopulations of RMP by differential centrifugation: One larger RMP express binding of anti-GlyP, AnV and Ulex, and carry the majority of procoagulant activity. The smaller RMP expressing only Ulex binding exhibit much weaker procoagulant activity. The roles of these two species of RMP remain to be elucidated. We speculate that smaller RMP may represent the nanovesicles described by Allen et al [Biochem J 188:881, 1980] and that Ulex may be a novel and convenient means for the study of these small vesicles.


1982 ◽  
Vol 48 (01) ◽  
pp. 049-053 ◽  
Author(s):  
C G Fenn ◽  
J M Littleton

SummaryEthanol at physiologically tolerable concentrations inhibited platelet aggregation in vitro in a relatively specific way, which may be influenced by platelet membrane lipid composition. Aggregation to collagen, calcium ionophore A23187 and thrombin (low doses) were often markedly inhibited by ethanol, adrenaline and ADP responses were little affected, and aggregation to exogenous arachidonic acid was actually potentiated by ethanol. Aggregation to collagen, thrombin and A23187 was inhibited more by ethanol in platelets enriched with saturated fatty acids than in those enriched with unsaturated fats. Platelets enriched with cholesterol showed increased sensitivity to ADP, arachidonate and adrenaline but this increase in cholesterol content did not appear to influence the inhibition by ethanol of platelet responses. The results suggest that ethanol may inhibit aggregation by an effect on membrane fluidity and/or calcium mobilization resulting in decreased activity of a membrane-bound phospholipase.


Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4121-4131 ◽  
Author(s):  
Q. Lu ◽  
B.D. Shur

A variety of sperm surface components have been suggested to mediate gamete recognition by binding to glycoside ligands on the egg coat glycoprotein ZP3. The function of each of these candidate receptors is based upon varying degrees of circumstantial and direct evidence; however, the effects on fertilization of targeted mutations in any of these candidate receptors have not yet been reported. In this paper, we describe the effects of targeted mutations in beta1,4-galactosyltransferase, the best studied of the candidate receptors for ZP3. Surprisingly, galactosyltransferase-null (gt[−/−]) males are fertile; however, sperm from gt(−/−) males bind less radiolabeled ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either ZP3 or anti-galactosyltransferase antibodies, as do wild-type sperm. In contrast, gt(−/−) sperm undergo the acrosome reaction normally in response to calcium ionophore, which bypasses the requirement for ZP3 binding. The inability of gt(−/−) sperm to undergo a ZP3-induced acrosome reaction renders them physiologically inferior to wild-type sperm, as assayed by their relative inability to penetrate the egg coat and fertilize the oocyte in vitro. Thus, although ZP3 binding and subsequent induction of the acrosome reaction are dispensable for fertilization, they impart a physiological advantage to the fertilizing sperm. A second strain of mice was created that is characterized by a loss of of the long galactosyltransferase isoform responsible for ZP3-dependent signal transduction, but which maintains normal levels of Golgi galactosylation. Sperm from these mice show that the defective sperm-egg interactions in gt(−/−) mice are due directly to a loss of the long galactosyltransferase isoform from the sperm surface and are independent of the state of intracellular galactosylation during spermatogenesis.


2007 ◽  
Vol 75 (11) ◽  
pp. 5338-5345 ◽  
Author(s):  
Kee-Jong Hong ◽  
Jason R. Wickstrum ◽  
Hung-Wen Yeh ◽  
Michael J. Parmely

ABSTRACT The production of gamma interferon (IFN-γ) is a key step in the protective innate immune response to Francisella tularensis. Natural killer cells and T cells in the liver are important sources of this cytokine during primary F. tularensis infections, and interleukin-12 (IL-12) appears to be an essential coactivating cytokine for hepatic IFN-γ expression. The present study was undertaken to determine whether or not macrophages (Mφ) or dendritic cells (DC) provide coactivating signals for the liver IFN-γ response in vitro, whether IL-12 mediates these effects, and whether Toll-like receptor (TLR) signaling is essential to induce this costimulatory activity. Both bone marrow-derived Mφ and DC significantly augmented the IFN-γ response of F. tularensis-challenged liver lymphocytes in vitro. While both cell types produced IL-12p40 in response to F. tularensis challenge, only DC secreted large quantities of IL-12p70. DC from both IL-12p35-deficient and TLR2-deficient mice failed to produce IL-12p70 and did not costimulate liver lymphocytes for IFN-γ production in response to viable F. tularensis organisms. Conversely, liver lymphocytes from TLR2-deficient mice cocultured with wild-type accessory cells produced IFN-γ at levels comparable to those for wild-type hepatic lymphocytes. These findings indicate that TLR2 controls hepatic lymphocyte IFN-γ responses to F. tularensis by regulating DC IL-12 production. While Mφ also coinduced hepatic IFN-γ production in response to F. tularensis, they did so in a fashion less dependent on TLR2.


2019 ◽  
Author(s):  
Kristina A.M. Arendt ◽  
Giannoula Ntaliarda ◽  
Vasileios Armenis ◽  
Danai Kati ◽  
Christin Henning ◽  
...  

ABSTRACTKRAS inhibitors perform inferior to other targeted drugs. To investigate a possible reason for this, we treated cancer cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRASG12C), and silenced/overexpressed mutant KRAS using custom vectors. We show that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2/interleukin-1β signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in Ccr2 and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and predicted poor survival. Hence the findings support that in vitro systems are suboptimal for anti-KRAS drug screens, and suggest that interleukin-1β blockade might be specific for KRAS-mutant cancers.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Adi Litmanovich ◽  
Khaled Khazim ◽  
Kamal Hassan ◽  
Batya Kristal

Abstract Background and Aims Hemodialysis (HD) patients suffer from devastatingly high rates of morbidity and mortality due to infections. Neutrophils isolated from HD patients were shown in the past to exhibit impaired phagocytosis in a mechanism yet to be completely elucidated. In 2004, Brinkmann et al. were the first to describe a new form of cell death which they termed Neutrophil Extracellular Trap Formation, or NETosis, in which neutrophils expulse batches of DNA and proteins in response to bacterial or chemical stimuli in order to trap and remove the stimulus. NETosis is further divided into two pathways, NADPH oxidase (NOX)-dependent and NOX-independent, induced in vitro by phorbol 12-myristate 13-acetate (PMA) and Calcium Ionophore (CI), respectively. In this research, we aim to assess the capacities of HD neutrophils to engage in NETosis, hypothesizing they might be diminished similarly to their phagocytic capacities, and to elucidate the underlying mechanism behind this impairment. Method Neutrophils were isolated from whole venous blood of normal controls and from the arterial line of HD patients before the onset of a dialysis session using EasySepTM direct human neutrophils isolation kit. Then, NETosis was induced with either PMA, Calcium Ionophore A23187 or Phosphate-buffered saline (PBS) as negative control. cfDNA released from the cells was quantified by measuring SYTOXTM-green nucleic acid stain fluorescence levels in the supernatant after stimulation using Elisa plate reader and morphological analysis was done under fluorescence microscope. Reactive oxygen species levels were quantified using flow cytometry and superoxide dismutase (SOD) activity was measured using the SOD Assay Kit (Sigma-Aldrich). Protein arginine deiminase 4 (PAD4) expression was assessed by western blotting. Hydrogen peroxide (H2O2) was added exogenously in order to restore NETosis. Results HD isolated neutrophils exhibit decreased NETosis compared with normal controls in response to both PMA in the NOX-dependent pathway and CI in the NOX-independent pathway, as measured by immunofluorescence and cfDNA quantification. In the NOX-dependent pathway SOD activity was found to be 14% decreased in HD patients, resulting in the accumulation of superoxide radicals and decreased production of H2O2. In the NOX-independent pathway, PAD4 expression was found to be significantly decreased as well. NET formation was restored in vitro in HD neutrophils by the addition of exogenous H2O2. Conclusion To date, impaired NETosis was described only in congenital conditions such as chronic granulomatous disease and myeloperoxidase deficiency. To our knowledge, our research is the first to describe an acquired defect in NETosis in end stage renal disease patients undergoing chronic hemodialysis. An intervention aimed to improve neutrophil function in these patients may reduce the morbidity and mortality due to infection-related disease.


2019 ◽  
Vol 20 (20) ◽  
pp. 4989 ◽  
Author(s):  
Yoshinori Tanino ◽  
Xintao Wang ◽  
Takefumi Nikaido ◽  
Kenichi Misa ◽  
Yuki Sato ◽  
...  

Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4′s critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.


Sign in / Sign up

Export Citation Format

Share Document