Abstract 205: Resuscitation Using eCPR to Predict Survival After In-Hospital Cardiac Arrest (Rescue-IHCA Score) Survival Prediction Model--An Analysis of the American Heart Association Get With the Guidelines--Resuscitation Registry

Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Joseph E Tonna ◽  
Lance B Becker ◽  
Saket Girotra ◽  
Craig Selzman ◽  
Ravi R Thiagarajan ◽  
...  

Background: To guide extracorporeal cardiopulmonary resuscitation (eCPR) use, a generalizable survival prediction model is needed. Methods: We identified patients≥18 years with IHCA who received eCPR (January 2000-December 2017) in the AHA Get With The Guidelines—Resuscitation registry to build a survival model. We categorized admission CPC into ‘good’ (CPC 1) vs other. We singly imputed variables with ≥15% missing (admission CPC [20%], duration of event [15%]). Variables associated with death (p-value ≤0.1) were retained and initial rhythm was forced into the model. We used firth penalized logistic regression to estimate model parameters. To test the imputation effect, we performed a sensitivity analysis excluding CPC. We performed a Kaplan Meier survival analysis stratified by resuscitation duration (0 to ≤15, 15 to ≤30, 30 to ≤60, ≥60 min). Results: Of 1,082 patients who underwent eCPR, 963 were included in the model ( Table 1 ). Area Under the Receiving Operating Characteristic (AUROC) = 0.81 (95% CI [0.78 to 0.83]). Associations with death included: nighttime eCPR use; non-white race; patients with prior renal insufficiency, preceding hypoperfusion, and congestive heart failure. Initial rhythm was not associated with death. Every 10 minutes of resuscitation was associated with 12% increased odds of death. Shorter resuscitation duration was strongly associated with hospital survival ( Figure 1 ). The AUROC was unchanged (0.81 [95% CI 0.78 - 0.84]) after sensitivity analysis excluding CPC. Conclusions: In this preliminary registry analysis, survival after eCPR for IHCA was estimated by patient and arrest characteristics. Our findings require validation.

2021 ◽  
Vol 10 (13) ◽  
pp. 2869
Author(s):  
Indah Jamtani ◽  
Kwang-Woong Lee ◽  
Yun-Hee Choi ◽  
Young-Rok Choi ◽  
Jeong-Moo Lee ◽  
...  

This study aimed to create a tailored prediction model of hepatocellular carcinoma (HCC)-specific survival after transplantation based on pre-transplant parameters. Data collected from June 2006 to July 2018 were used as a derivation dataset and analyzed to create an HCC-specific survival prediction model by combining significant risk factors. Separate data were collected from January 2014 to June 2018 for validation. The prediction model was validated internally and externally. The data were divided into three groups based on risk scores derived from the hazard ratio. A combination of patient demographic, laboratory, radiological data, and tumor-specific characteristics that showed a good prediction of HCC-specific death at a specific time (t) were chosen. Internal and external validations with Uno’s C-index were 0.79 and 0.75 (95% confidence interval (CI) 0.65–0.86), respectively. The predicted survival after liver transplantation for HCC (SALT) at a time “t” was calculated using the formula: [1 − (HCC-specific death(t’))] × 100. The 5-year HCC-specific death and recurrence rates in the low-risk group were 2% and 5%; the intermediate-risk group was 12% and 14%, and in the high-risk group were 71% and 82%. Our HCC-specific survival predictor named “SALT calculator” could provide accurate information about expected survival tailored for patients undergoing transplantation for HCC.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 413
Author(s):  
Saisai Wang ◽  
Jian Chen ◽  
Xiaodong Wen

Most of the existing models of structural life prediction in early carbonized environment are based on accelerated erosion after standard 28 days of cement-based materials, while cement-based materials in actual engineering are often exposed to air too early. These result in large predictions of the life expectancy of mineral-admixture cement-based materials under early CO2-erosion and affecting the safe use of structures. To this end, different types of mineral doped cement-based material test pieces are formed, and early CO2-erosion experimental tests are carried out. On the basis of the analysis of the existing model, the influence coefficient of CO2-erosion of the mineral admixture Km is introduced, the relevant function is given, and the life prediction model of the mineral admixture cement-based material under the early CO2-erosion is established and the model parameters are determined by using the particle group algorithm (PSO). It has good engineering applicability and guiding significance.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 624
Author(s):  
Yan Shan ◽  
Mingbin Huang ◽  
Paul Harris ◽  
Lianhai Wu

A sensitivity analysis is critical for determining the relative importance of model parameters to their influence on the simulated outputs from a process-based model. In this study, a sensitivity analysis for the SPACSYS model, first published in Ecological Modelling (Wu, et al., 2007), was conducted with respect to changes in 61 input parameters and their influence on 27 output variables. Parameter sensitivity was conducted in a ‘one at a time’ manner and objectively assessed through a single statistical diagnostic (normalized root mean square deviation) which ranked parameters according to their influence of each output variable in turn. A winter wheat field experiment provided the case study data. Two sets of weather elements to represent different climatic conditions and four different soil types were specified, where results indicated little influence on these specifications for the identification of the most sensitive parameters. Soil conditions and management were found to affect the ranking of parameter sensitivities more strongly than weather conditions for the selected outputs. Parameters related to drainage were strongly influential for simulations of soil water dynamics, yield and biomass of wheat, runoff, and leaching from soil during individual and consecutive growing years. Wheat yield and biomass simulations were sensitive to the ‘ammonium immobilised fraction’ parameter that related to soil mineralization and immobilisation. Simulations of CO2 release from the soil and soil nutrient pool changes were most sensitive to external nutrient inputs and the process of denitrification, mineralization, and decomposition. This study provides important evidence of which SPACSYS parameters require the most care in their specification. Moving forward, this evidence can help direct efficient sampling and lab analyses for increased accuracy of such parameters. Results provide a useful reference for model users on which parameters are most influential for different simulation goals, which in turn provides better informed decision making for farmers and government policy alike.


Author(s):  
Sebastian Brandstaeter ◽  
Sebastian L. Fuchs ◽  
Jonas Biehler ◽  
Roland C. Aydin ◽  
Wolfgang A. Wall ◽  
...  

AbstractGrowth and remodeling in arterial tissue have attracted considerable attention over the last decade. Mathematical models have been proposed, and computational studies with these have helped to understand the role of the different model parameters. So far it remains, however, poorly understood how much of the model output variability can be attributed to the individual input parameters and their interactions. To clarify this, we propose herein a global sensitivity analysis, based on Sobol indices, for a homogenized constrained mixture model of aortic growth and remodeling. In two representative examples, we found that 54–80% of the long term output variability resulted from only three model parameters. In our study, the two most influential parameters were the one characterizing the ability of the tissue to increase collagen production under increased stress and the one characterizing the collagen half-life time. The third most influential parameter was the one characterizing the strain-stiffening of collagen under large deformation. Our results suggest that in future computational studies it may - at least in scenarios similar to the ones studied herein - suffice to use population average values for the other parameters. Moreover, our results suggest that developing methods to measure the said three most influential parameters may be an important step towards reliable patient-specific predictions of the enlargement of abdominal aortic aneurysms in clinical practice.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4290
Author(s):  
Dongmei Zhang ◽  
Yuyang Zhang ◽  
Bohou Jiang ◽  
Xinwei Jiang ◽  
Zhijiang Kang

Reservoir history matching is a well-known inverse problem for production prediction where enormous uncertain reservoir parameters of a reservoir numerical model are optimized by minimizing the misfit between the simulated and history production data. Gaussian Process (GP) has shown promising performance for assisted history matching due to the efficient nonparametric and nonlinear model with few model parameters to be tuned automatically. Recently introduced Gaussian Processes proxy models and Variogram Analysis of Response Surface-based sensitivity analysis (GP-VARS) uses forward and inverse Gaussian Processes (GP) based proxy models with the VARS-based sensitivity analysis to optimize the high-dimensional reservoir parameters. However, the inverse GP solution (GPIS) in GP-VARS are unsatisfactory especially for enormous reservoir parameters where the mapping from low-dimensional misfits to high-dimensional uncertain reservoir parameters could be poorly modeled by GP. To improve the performance of GP-VARS, in this paper we propose the Gaussian Processes proxy models with Latent Variable Models and VARS-based sensitivity analysis (GPLVM-VARS) where Gaussian Processes Latent Variable Model (GPLVM)-based inverse solution (GPLVMIS) instead of GP-based GPIS is provided with the inputs and outputs of GPIS reversed. The experimental results demonstrate the effectiveness of the proposed GPLVM-VARS in terms of accuracy and complexity. The source code of the proposed GPLVM-VARS is available at https://github.com/XinweiJiang/GPLVM-VARS.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kiyoaki Sugiura ◽  
Yuki Seo ◽  
Takayuki Takahashi ◽  
Hideyuki Tokura ◽  
Yasuhiro Ito ◽  
...  

Abstract Background TAS-102 plus bevacizumab is an anticipated combination regimen for patients who have metastatic colorectal cancer. However, evidence supporting its use for this indication is limited. We compared the cost-effectiveness of TAS-102 plus bevacizumab combination therapy with TAS-102 monotherapy for patients with chemorefractory metastatic colorectal cancer. Method Markov decision modeling using treatment costs, disease-free survival, and overall survival was performed to examine the cost-effectiveness of TAS-102 plus bevacizumab combination therapy and TAS-102 monotherapy. The Japanese health care payer’s perspective was adopted. The outcomes were modeled on the basis of published literature. The incremental cost-effectiveness ratio (ICER) between the two treatment regimens was the primary outcome. Sensitivity analysis was performed and the effect of uncertainty on the model parameters were investigated. Results TAS-102 plus bevacizumab had an ICER of $21,534 per quality-adjusted life-year (QALY) gained compared with TAS-102 monotherapy. Sensitivity analysis demonstrated that TAS-102 monotherapy was more cost-effective than TAS-102 and bevacizumab combination therapy at a willingness-to-pay of under $50,000 per QALY gained. Conclusions TAS-102 and bevacizumab combination therapy is a cost-effective option for patients who have metastatic colorectal cancer in the Japanese health care system.


Sign in / Sign up

Export Citation Format

Share Document