Abstract 15042: Heart Rhythm Classification From an Optimal Lead Subset of the 12-lead Electrocardiogram by Deep Learning

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Changxin Lai ◽  
Shijie Zhou ◽  
Natalia Trayanova

Introduction: Deep learning (DL) has achieved promising performance on common heart rhythms classification using 12-lead electrocardiogram (ECG). However, two major concerns hinder the DL’s application - lack of interpretability and overfitting caused by using the full 12-lead ECG as input. Objective: We proposed a hybrid DL model with enhanced interpretability to detect 9 common types of heart rhythms from an optimal ECG lead subset, and to quantitively analyze the overfitting. Methods: We used a multicenter dataset of 6,877 annotated 12-lead ECG recordings. The proposed model (Fig. 1A) consists of a feature extraction and a decision-making. The feature extraction used 12 separate neural networks to extract features from each lead. The features were then fed into a random-forest classifier in the decision-making step to classify heart-rhythm types. The classifier was used to interpret the correlations between the heart rhythms and the ECG leads, to find an optimal subset of ECG leads, and to analyze whether using 12-lead ECG added unnecessary complexity to the model and undermined its generalizability. Results: The proposed model detected the correlations between the heart-rhythm types and the ECG leads (Fig. 1B), and identified an optimal ECG lead subset (leads II, aVR, V1, V4). The optimal subset was, in comparison with using 12-lead ECG, significantly better (F1 =0.776 vs. F1 = 0.767, P=0.02) on the validation set for classifying the 9 common heart rhythms. There was no statistical difference on the test set. No overfitting caused by 12-lead ECG was detected in this study. Conclusion: The hybrid DL model based on an optimal 4-lead ECG can interpret rhythm types without significant loss of accuracy in comparison with the 12-lead ECG.

2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 401
Author(s):  
Jeong Hwan Kim ◽  
Jeong Whan Lee ◽  
Kyeong Seop Kim

Background/Objectives: The main objective of this research is to design Deep Learning (DL) architecture to classify an electrocardiogram (ECG) signal into normal sinus rhythm (NSR), premature ventricular contraction (PVC), atrial premature contraction (APC) or right/left bundle branch block (RBBB/LBBB) arrhythmia by empirically optimizing the numbers of hidden layers, the number of neurons in each hidden layer and the number of neurons in input layer in DL model.Methods/Statistical analysis: For our experimental simulations, PhysioBank-MIT/BIH annotated ECG database was considered to classify heart beats into abnormal rhythms (PVC, APC, RBBB, LBBB) or normal sinus. The performance of classifying ECG beats by the proposed DL architecture was evaluated by computing the overall accuracy of classifying NSR or four different arrhythmias.Findings: Base on testing MIT/BIH arrhythmia database, the proposed DL model can classify the heart rhythm into one of NSR, PVC, APC, RBBB or LBBB beat with the mean accuracy of 95.5% by implementing DL architecture with 200 neurons in input layer, 100 neurons in the first and second hidden layer, respectively and 80 neurons in the 3rd hidden layer.Improvements/Applications: Our experimental results show that the proposed DL model might not be quite accurate for detecting APC beats due to its morphological resemblance of NSR. Therefore, we might need to design more sophisticated DL architecture by including more temporal characteristics of APC to increase the classification accuracy of APC arrhythmia in the future research efforts. 


2021 ◽  
Vol 11 (10) ◽  
pp. 2618-2625
Author(s):  
R. T. Subhalakshmi ◽  
S. Appavu Alias Balamurugan ◽  
S. Sasikala

In recent times, the COVID-19 epidemic turn out to be increased in an extreme manner, by the accessibility of an inadequate amount of rapid testing kits. Consequently, it is essential to develop the automated techniques for Covid-19 detection to recognize the existence of disease from the radiological images. The most ordinary symptoms of COVID-19 are sore throat, fever, and dry cough. Symptoms are able to progress to a rigorous type of pneumonia with serious impediment. As medical imaging is not recommended currently in Canada for crucial COVID-19 diagnosis, systems of computer-aided diagnosis might aid in early COVID-19 abnormalities detection and help out to observe the disease progression, reduce mortality rates potentially. In this approach, a deep learning based design for feature extraction and classification is employed for automatic COVID-19 diagnosis from computed tomography (CT) images. The proposed model operates on three main processes based pre-processing, feature extraction, and classification. The proposed design incorporates the fusion of deep features using GoogLe Net models. Finally, Multi-scale Recurrent Neural network (RNN) based classifier is applied for identifying and classifying the test CT images into distinct class labels. The experimental validation of the proposed model takes place using open-source COVID-CT dataset, which comprises a total of 760 CT images. The experimental outcome defined the superior performance with the maximum sensitivity, specificity, and accuracy.


Author(s):  
Karthika Gidijala ◽  
◽  
Mansa Devi Pappu ◽  
Manasa Vavilapalli ◽  
Mahesh Kothuru ◽  
...  

Many different models of Convolution Neural Networks exist in the Deep Learning studies. The application and prudence of the algorithms is known only when they are implemented with strong datasets. The histopathological images of breast cancer are considered as to have much number of haphazard structures and textures. Dealing with such images is a challenging issue in deep learning. Working on wet labs and in coherence to the results many research have blogged with novel annotations in the research. In this paper, we are presenting a model that can work efficiently on the raw images with different resolutions and alleviating with the problems of the presence of the structures and textures. The proposed model achieves considerably good results useful for decision making in cancer diagnosis.


Author(s):  
Changxin Lai ◽  
Shijie Zhou ◽  
Natalia A. Trayanova

Deep learning (DL) has achieved promising performance in detecting common abnormalities from the 12-lead electrocardiogram (ECG). However, diagnostic redundancy exists in the 12-lead ECG, which could impose a systematic overfitting on DL, causing poor generalization. We, therefore, hypothesized that finding an optimal lead subset of the 12-lead ECG to eliminate the redundancy would help improve the generalizability of DL-based models. In this study, we developed and evaluated a DL-based model that has a feature extraction stage, an ECG-lead subset selection stage and a decision-making stage to automatically interpret multiple common ECG abnormality types. The data analysed in this study consisted of 6877 12-lead ECG recordings from CPSC 2018 (labelled as normal rhythm or eight types of ECG abnormalities, split into training (approx. 80%), validation (approx. 10%) and test (approx. 10%) sets) and 3998 12-lead ECG recordings from PhysioNet/CinC 2020 (labelled as normal rhythm or four types of ECG abnormalities, used as external text set). The ECG-lead subset selection module was introduced within the proposed model to efficiently constrain model complexity. It detected an optimal 4-lead ECG subset consisting of leads II, aVR, V1 and V4. The proposed model using the optimal 4-lead subset significantly outperformed the model using the complete 12-lead ECG on the validation set and on the external test dataset. The results demonstrated that our proposed model successfully identified an optimal subset of 12-lead ECG; the resulting 4-lead ECG subset improves the generalizability of the DL model in ECG abnormality interpretation. This study provides an outlook on what channels are necessary to keep and which ones may be ignored when considering an automated detection system for cardiac ECG abnormalities. This article is part of the theme issue ‘Advanced computation in cardiovascular physiology: new challenges and opportunities’.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1364
Author(s):  
Beomjoo Park ◽  
Muhammad Afzal ◽  
Jamil Hussain ◽  
Asim Abbas ◽  
Sungyoung Lee

To support evidence-based precision medicine and clinical decision-making, we need to identify accurate, appropriate, and clinically relevant studies from voluminous biomedical literature. To address the issue of accurate identification of high impact relevant articles, we propose a novel approach of attention-based deep learning for finding and ranking relevant studies against a topic of interest. For learning the proposed model, we collect data consisting of 240,324 clinical articles from the 2018 Precision Medicine track in Text REtrieval Conference (TREC) to identify and rank relevant documents matched with the user query. We built a BERT (Bidirectional Encoder Representations from Transformers) based classification model to classify high and low impact articles. We contextualized word embedding to create vectors of the documents, and user queries combined with genetic information to find contextual similarity for determining the relevancy score to rank the articles. We compare our proposed model results with existing approaches and obtain a higher accuracy of 95.44% as compared to 94.57% (the next best performer) and get a higher precision by about 14% at P@5 (precision at 5) and about 12% at P@10 (precision at 10). The contextually viable and competitive outcomes of the proposed model confirm the suitability of our proposed model for use in domains like evidence-based precision medicine.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3608
Author(s):  
Chiao-Sheng Wang ◽  
I-Hsi Kao ◽  
Jau-Woei Perng

The early diagnosis of a motor is important. Many researchers have used deep learning to diagnose motor applications. This paper proposes a one-dimensional convolutional neural network for the diagnosis of permanent magnet synchronous motors. The one-dimensional convolutional neural network model is weakly supervised and consists of multiple convolutional feature-extraction modules. Through the analysis of the torque and current signals of the motors, the motors can be diagnosed under a wide range of speeds, variable loads, and eccentricity effects. The advantage of the proposed method is that the feature-extraction modules can extract multiscale features from complex conditions. The number of training parameters was reduced so as to solve the overfitting problem. Furthermore, the class feature map was proposed to automatically determine the frequency component that contributes to the classification using the weak learning method. The experimental results reveal that the proposed model can effectively diagnose three different motor states—healthy state, demagnetization fault state, and bearing fault state. In addition, the model can detect eccentric effects. By combining the current and torque features, the classification accuracy of the proposed model is up to 98.85%, which is higher than that of classical machine-learning methods such as the k-nearest neighbor and support vector machine.


2021 ◽  
Vol 7 ◽  
pp. e386
Author(s):  
Mahwish Naz ◽  
Jamal Hussain Shah ◽  
Muhammad Attique Khan ◽  
Muhammad Sharif ◽  
Mudassar Raza ◽  
...  

Provocative heart disease is related to ventricular arrhythmias (VA). Ventricular tachyarrhythmia is an irregular and fast heart rhythm that emerges from inappropriate electrical impulses in the ventricles of the heart. Different types of arrhythmias are associated with different patterns, which can be identified. An electrocardiogram (ECG) is the major analytical tool used to interpret and record ECG signals. ECG signals are nonlinear and difficult to interpret and analyze. We propose a new deep learning approach for the detection of VA. Initially, the ECG signals are transformed into images that have not been done before. Later, these images are normalized and utilized to train the AlexNet, VGG-16 and Inception-v3 deep learning models. Transfer learning is performed to train a model and extract the deep features from different output layers. After that, the features are fused by a concatenation approach, and the best features are selected using a heuristic entropy calculation approach. Finally, supervised learning classifiers are utilized for final feature classification. The results are evaluated on the MIT-BIH dataset and achieved an accuracy of 97.6% (using Cubic Support Vector Machine as a final stage classifier).


Author(s):  
Adem Assfaw Mekonnen ◽  
Hussien Worku Seid ◽  
Sudhir Kumar Mohapatra ◽  
Srinivas Prasad

The timely prognosis of brain tumors is gambling a great role within the pretreatment of patients and keep the life of suffers. The manual classification of brain tumors is a difficult task for radiologists due to the intensity variation pixel information produced by the magnetic resonance machine and it is a very tedious task for a large number of images. A deep learning algorithm becomes a famous algorithm to conquer the problems traditional machine learning algorithms by automatically feature extraction from the input spaces and accurately detect the brain tumors. One of the most important features of deep learning is transferred a gain knowledge strategy to use small datasets. Transfer learning is explored by freezing layers and fine-tuning a pre-trained model to a recommended convolutional neural net model. The proposed model is trained using 4000 real magnetic resonance images datasets. The mean accuracy of the proposed model is found to be 98% for brain tumor classifications with mini-batch size 32 and a learning rate of 0.001.


Author(s):  
Amrutha Krishnamoorthy ◽  
Vijayasimha Reddy Sindhura ◽  
Devarakonda Gowtham ◽  
C. Jyotsna ◽  
J. Amudha

Extraction of eye gaze events is highly dependent on automated powerful software that charges exorbitant prices. The proposed open-source intelligent tool StimulEye helps to detect and classify eye gaze events and analyse various metrics related to these events. The algorithms for eye event detection in use today heavily depend on hand-crafted signal features and thresholding, which are computed from the stream of raw gaze data. These algorithms leave most of their parametric decisions on the end user which might result in ambiguity and inaccuracy. StimulEye uses deep learning techniques to automate eye gaze event detection which neither requires manual decision making nor parametric definitions. StimulEye provides an end to end solution which takes raw streams of data from an eye tracker in text form, analyses these to classify the inputs into the events, namely saccades, fixations, and blinks. It provides the user with insights such as scanpath, fixation duration, radii, etc.


Sign in / Sign up

Export Citation Format

Share Document