Abstract 120: Artesunate Reduces the Severity of Post-Resuscitation Myocardial and Cerebral Dysfunction

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_4) ◽  
Author(s):  
Hui Li ◽  
Cheng Cheng ◽  
Lian Liang ◽  
Tao Jin ◽  
Guozhen Zhang ◽  
...  

Introduction: Artesunate (ART) possesses anti-inflammatory activity, which can mitigate the systemic inflammatory response in poor outcomes of cardiac arrest (CA). We investigated the effects of ART on myocardial and cerebral function, duration of survival, and inflammation in a rat model of CA and cardiopulmonary resuscitation (CPR). Hypothesis: ART reduces the severity of post resuscitation myocardial and cerebral dysfunction by alleviating inflammation in a rat model of CA and CPR. Methods: 30 male Sprague-Dawley rats weighing between 450g-550g were randomized into 3 groups: Sham (S), Control (C), and Artesunate (A). C and A were divided into subgroups: survival and non-survival (n=6). Ventricular fibrillation (VF) was induced and untreated for 6 min. A 4J defibrillation was attempted after 8 min of CPR. Phosphate buffer (1ml/kg, pH 7.9-8.1) or ART (2.4mg/kg), was administered at return of spontaneous circulation (ROSC). Myocardial function was measured at baseline and every hour for 4h post ROSC. Plasma levels of IL-6, TNF-α and cTnI were detected at baseline and 4h after ROSC. Survival animals were observed for an additional 72h. Neurologic deficit scores were recorded daily. Results: ART reduced the severity of post-resuscitation myocardial dysfunction compared to C. It attenuated IL-6, TNF-α and cTnI plasma levels 4h after ROSC (p<0.05) (Fig. 1). Post-resuscitation cerebral function and survival rate also improved significantly (p<0.05) (Fig. 2). Conclusion: ART reduces the severity of post-resuscitation myocardial and cerebral dysfunction, improves survival rate and attenuates inflammation in a rat of model of CA and CPR.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_4) ◽  
Author(s):  
Cheng Cheng ◽  
Hui Li ◽  
Tao Jin ◽  
Lian Liang ◽  
Guozhen Zhang ◽  
...  

Introduction: Massive systemic inflammation is a primary cause of myocardial dysfunction following cardiac arrest (CA) and resuscitation (CPR). We investigated the effects of ω-3 polyunsaturated fatty acids (ω-3 PUFA) on systemic inflammation and myocardial function after CA and CPR. Hypothesis: Administration of ω-3 PUFA at the start of CPR will alleviate post CPR inflammation and improve cardiac function in a rat model of CA and CPR. Methods: 18 male Sprague-Dawley rats weighing between 450g-550g were randomized into three groups: Sham, Control, and ω-3 PUFA. Ventricular fibrillation (VF) was induced and untreated for 6 min. 4J defibrillation was attempted after 8 min of CPR. Saline placebo or ω-3 PUFA (5mL/kg) was infused at the start of CPR and continued for 4h. Ejection fraction (EF), cardiac output (CO) and myocardial performance index (MPI) were measured by echocardiography at baseline, 1, 3 and 6h after return of spontaneous circulation (ROSC). Inflammatory cytokines (IL-6 and TNF-α) and cardiac biomarker (cTnI) levels in plasma were detected at baseline and 6 hrs after ROSC. Results: A decrease in EF and CO and an increase in MPI occurred after resuscitation. Significant improvement was noted in ω-3 PUFA compared to control animals (p<0.05) (Fig. 1). ELISA analysis showed increased plasma IL-6, TNF-α, and cTnI in post-resuscitated rats. Administration of ω-3 PUFA attenuated the rise in these plasma biomarkers (p<0.05) (Fig. 2). Conclusion: Administration of ω-3 PUFA attenuates post-resuscitation systemic inflammation and improves myocardial function in a rat model of CA and CPR.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lorissa Lamoureux ◽  
Herbert K Whitehouse ◽  
Jeejabai Radhakrishnan ◽  
Raúl J Gazmuri

Background: We have reported in rat and swine models of cardiac arrest that sodium hydrogen exchanger isoform-1 (NHE-1) inhibition facilitates resuscitation, ameliorates myocardial dysfunction, and improves survival. Others have reported that α-methylnorepinephrine (α-MNE) - a selective α2-adrenoreceptor agonist - is superior to epinephrine given its lack of β-agonist effects. We examined in a rat model of VF and closed-chest resuscitation the effects of combining the NHE-1 inhibitor zoniporide (ZNP) with α-MNE. Methods: VF was electrically induced in 32 male retired breeder Sprague-Dawley rats and left untreated for 8 minutes after which resuscitation was attempted by an 8 minute interval of chest compression and delivery of electrical shocks. Rats were randomized 1:1:1:1 to receive a 3 mg/kg bolus of ZNP or 0.9% NaCl before starting chest compression and a 100 μg/kg bolus of α-MNE or its vehicle at minute 2 of chest-compressions establishing 4 groups of 8 rats each. Successfully resuscitated rats were monitored for 240 minutes. Results: The number of rats that had return of spontaneous circulation and then survived 240 min were: α-MNE(-)/ZNP(-) 4 and 2; α-MNE(-)/ZNP(+) 5 and 5; α-MNE(+)/ZNP(-) 2 and 1; and α-MNE(+)/ZNP(+) 7 and 7 yielding a statistically significant effect on overall survival times corresponding to 105 ± 114, 150 ± 124, 58 ± 108, and 210 ± 85 min, respectively (p < 0.045). Post-resuscitation lactate levels were attenuated in all treatment groups with the greatest effect by the α-MNE(+)/ZNP(+) combination without major differences in hemodynamic function (Table). Conclusion: We confirm a beneficial effect resulting from the combination of ZNP (given to attenuate myocardial reperfusion injury) and α-MNE (given to augment peripheral vascular resistance during chest compression without the detrimental actions of epinephrine). The proposed combination may prove to be a highly effective novel strategy for resuscitation from cardiac arrest.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_4) ◽  
Author(s):  
Tao Jin ◽  
Cheng Cheng ◽  
Hui Li ◽  
Lian Liang ◽  
Guozhen Zhang ◽  
...  

Introduction: Previous studies have demonstrated that ferroptosis, a newly defined iron-dependent cell death, mediates ischemia/reperfusion induced cardiomyopathy. However, it is unclear whether ferroptosis plays a role in post-resuscitation myocardial dysfunction (PRMD). This study investigated the effects of UAMC-3203, a novel analog of ferroptosis specific inhibitors, on myocardial function after cardiopulmonary resuscitation (CPR). Hypothesis: Administration of UAMC-3203 during CPR alleviates PRMD in a rat model of cardiac arrest (CA) and CPR. Methods: 18 male Sprague-Dawley rats weighing between 450-550g were randomized into 3 groups: 1) Sham, 2) Control, and 3) UAMC-3203 (5mg/kg, IP at start of precordial compression). Ventricular fibrillation (VF) was induced and continued for 6min. CPR was then initiated for 8min, after which defibrillation was attempted. Ejection fraction (EF), cardiac output (CO) and myocardial performance index (MPI) were measured by echocardiography at baseline, 15min, 1h, 3h and 6h respectively after return of spontaneous circulation (ROSC). Results: A significant reduction in cardiac function was observed after resuscitation. At 15 minutes after ROSC, ultrasound showed no difference in cardiac function between UAMC and control. However, at 1, 3, and 6 h after ROSC, UAMC significantly improved myocardial function (p<0.05) (Fig. 1). Conclusion: A ferroptosis-specific inhibitor, UAMC-3203, alleviated PRMD significantly in a rat of model of CA and CPR. Further study is needed to determine the benefit of this agent in larger animals and potential safety in humans before it can be tested in clinical resuscitation.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Zhengfei Yang ◽  
Jiangang Wang ◽  
Lu Yin ◽  
Shen Zhao ◽  
Ziren Tang ◽  
...  

Introduction: Curcumin has been proven to provide potent protection of vital organs against regional ischemia reperfusion injury. In this study, we investigated the effects of curcumin on the outcomes of CPR in a rat model of cardiac arrest. Hypothesis: Curcumin reduces the severity of post-CPR myocardial dysfunction and prolong the duration of survival. Method: Sixteen male Sprague-Dawley rats weighing between 450-550g were randomized into two groups: 1) Placebo; 2) Curcumin (100 mg/kg) pre-treatment. Ventricular fibrillation (VF) was induced. After 8 mins of VF, CPR was initiated for 8 mins and defibrillation was then attempted. Myocardial function was measured by echocardiography at baseline and hourly for 4 hours following successful resuscitation. The duration of survival was observed for total 72 hours. Result: Six animals in the placebo group and seven in the curcumin group were successfully resuscitated. Post-resuscitation myocardial function was significantly impaired in all animals. However, myocardial function gradually improved 4 hours after resuscitation and was significantly better in the animals pre-treated with curcumin (Figure). Significantly shorter duration of survival of 40±29 hours was observed in the placebo group. Conclusion: In a rat model of cardiac arrest, curcuminim proves post-resuscitation myocardial dysfunction and prolongs the duration of survival.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Daesung Lim ◽  
Soo Hoon Lee ◽  
Dong Hoon Kim ◽  
Changwoo Kang ◽  
Jin Hee Jeong ◽  
...  

Abstract Background Obtaining vascular access can be challenging during resuscitation following cardiac arrest, and it is particularly difficult and time-consuming in paediatric patients. We aimed to compare the efficacy of high-dose intramuscular (IM) versus intravascular (IV) epinephrine administration with regard to the return of spontaneous circulation (ROSC) in an asphyxia-induced cardiac arrest rat model. Methods Forty-five male Sprague-Dawley rats were used for these experiments. Cardiac arrest was induced by asphyxia, and defined as a decline in mean arterial pressure (MAP) to 20 mmHg. After asphyxia-induced cardiac arrest, the rats were randomly allocated into one of 3 groups (control saline group, IV epinephrine group, and IM epinephrine group). After 540 s of cardiac arrest, cardiopulmonary resuscitation was performed, and IV saline (0.01 cc/kg), IV (0.01 mg/kg, 1:100,000) epinephrine or IM (0.05 mg/kg, 1:100,000) epinephrine was administered. ROSC was defined as the achievement of an MAP above 40 mmHg for more than 1 minute. Rates of ROSC, haemodynamics, and arterial blood gas analysis were serially observed. Results The ROSC rate (61.5%) of the IM epinephrine group was less than that in the IV epinephrine group (100%) but was higher than that of the control saline group (15.4%) (log-rank test). There were no differences in MAP between the two groups, but HR in the IM epinephrine group (beta coefficient = 1.02) decreased to a lesser extent than that in the IV epinephrine group with time. Conclusions IM epinephrine induced better ROSC rates compared to the control saline group in asphyxia-induced cardiac arrest, but not compared to IV epinephrine. The IM route of epinephrine administration may be a promising option in an asphyxia-induced cardiac arrest.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Shen Zhao ◽  
Jie Qian ◽  
Jiangang Wang ◽  
Ping Gong ◽  
Zhengfei Yang ◽  
...  

Background: Lipid peroxidation induced by oxygen free radicals plays a prominent role in myocardial injury after global ischemia. The present study investigated whether ventilation with lower concentration of inspired oxygen would decrease the severity of myocardial lipid peroxidation and post resuscitation myocardial dysfunction. Methods: Ventricular fibrillation was induced and untreated for 8 mins in 46 male Sprague-Dawley rats. Defibrillation was attempted after 8 mins of CPR. The animals were randomized into 3 groups: mechanical ventilation with 100% O2, 50% O2 or 21% O2 during CPR and one hr following return of spontaneous circulation. Normoxic ventilation was maintained thereafter. The level of 8-iso-Prostaglandin F2α (8-iso-PGF2α) in myocardium was evaluated using the enzyme-linked immunosorbent assay (ELISA). Blood gases, post resuscitation myocardial function and the duration of survival were monitored in all animals. Results: Compared with the 100% and 21% groups, the 50% group showed a lower 8-iso-PGF2α level at 4 hrs post resuscitation (Table). Significantly greater oxygen extraction rate, lower lactate, better myocardial ejection fraction and myocardial performance index were observed in the 50% group (Table). A significantly shorter duration of survival was observed in the 21% group when compared with the other two groups (Table). There was a trend in the 50% group towards an increased duration of survival when compared with the 100% group. Conclusions: In a rat cardiac arrest model, ventilation with 50% inspired oxygen during early post-ischemic reperfusion contributed to a decreased lipid peroxidation, a better oxygenation, myocardial function and duration of survival.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Fenglian He ◽  
Guanghui Zheng ◽  
Juntao Hu ◽  
Weiwei Ge ◽  
Xianfei Ji ◽  
...  

Introduction: Gasdermin D (GSDMD), a previously unknown protein, serves as a key effector in pyroptosis and its inhibition has protective effects during cerebral ischemia and reperfusion. Necrosulfonamide (NSA) specifically blocks the mixed lineage kinase domain-like pseudo kinase (MLKL), which directly binds to GSDMD preventing pyroptotic cell death and interleukin-1 (IL-1) release. In this study, we investigated the effects of NSA on survival and neurological function after cardiac arrest and resuscitation. Hypothesis: Administration of NSA following cardiopulmonary resuscitation (CPR) will improve survival and neurological function in a rat model of cardiac arrest. Methods: Twelve male Sprague-Dawley rats weighting between 450-550g were utilized. Ventricular fibrillation was induced and untreated for 6 min followed by defibrillation after 8 min of CPR. Animals were then randomized into two groups: NSA and control. NSA (10mg/kg) or vehicle was administered 5 minutes after restoration of spontaneous circulation (ROSC) by intraperitoneal injection. Duration of survival and neurological deficit scores were recorded at 24, 48, and 72 hours after ROSC. Results: All animals were resuscitated successfully. Duration of survival was significantly longer in the NSA group compared to control (p<0.05, Figure 1). The severity of post-resuscitation cerebral dysfunction was significantly reduced in the NSA group compared to control (p<0.05, Figure 2). Conclusion: Administration of NSA after ROSC improves post-resuscitation survival and neurological function in a rat model of cardiac arrest.


2019 ◽  
Author(s):  
Chunlin Xing ◽  
Yang Chen ◽  
Xuemei Zhu ◽  
Guoping Lu ◽  
Weiming Chen

AbstractCardiac arrest (CA) is a prominent cause of mortality worldwide. A large number of patients after post-cardiac arrest is often associated with a phase of impaired immunity. Through an asphyxial cardiac arrest rat model, we investigate the peripheral blood T cells subsets and the expressions of surface molecules after restoration of spontaneous circulation (ROSC). Sprague-Dawley rats (weight, 300-400 g) were randomly divided into cardiac arrest (CA) group and sham-operated group. CA group rats were induced by 6 minutes of asphyxia. After successful ROSC, 24 surviving rats in two groups were randomly assigned to be sacrificed (n = 8 per subgroup) at 3, 24 and 72 h. The proportion of T cells and CD4+, CD8+ subsets as well as the expression of surface molecules (CTLA-4, PD-1, CD28) on T cells were identified by flow cytometry. The protein concentrations of cytokines (TNF-α, IL-6, IL-10, IL-4, IFN-γ, IL-17A) in serum were measured by ELISA. Compared with sham-operated control group, CD3+ lymphocytes in CA group were significantly decreased at 24 and 72 h post-ROSC. The expression levels of CD28, PD-1, and CTLA-4 on T cells were markedly increased in CA groups at 24 h post-ROSC. Additionally, the concentrations of IFN-γ were significantly declined, while IL-4 was markedly elevated in the CA group at 24 and 72 h post-ROSC. T cells function is moderately changed after CA, which is associated with decreased percentage of T cells, the upregulation of co-inhibitory molecules, and the shift from T helper (Th) 1 to Th2.


Author(s):  
Guanghui Zheng ◽  
Fenglian He ◽  
Jing Xu ◽  
Juntao Hu ◽  
Weiwei Ge ◽  
...  

Abstract Purpose To investigate the effects of the selective NLRP3 inflammasome inhibitor MCC950 on post-resuscitation myocardial function and survival in a rat model of cardiopulmonary resuscitation (CPR). Methods Thirty-six Sprague Dawley rats were randomized into three groups: (1) MCC950, (2) control, and (3) sham. Each group consisted of a 6 h non-survival subgroup (n = 6) and a 48 h survival subgroup (n = 6). Ventricular fibrillation (VF) was induced and untreated for 6 min. CPR was initiated and continued for 8 min. Resuscitation was attempted with a 4 J defibrillation. MCC950 (10 mg/kg) or vehicle was administered via intraperitoneal injection immediately after the return of spontaneous circulation (ROSC). Myocardial function and sublingual microcirculation were measured after ROSC in the non-survival subgroups. Plasma levels of interleukin Iβ (IL-1β) and cardiac troponin I (cTnI) were measured at baseline and 6 h in the non-survival subgroups. Heart tissue was harvested to measure the NLRP3 inflammasome constituents, including NLRP3, apoptosis-associated speck-like protein (ASC), Caspase-1, and IL-1β. Survival duration and neurologic deficit score (NDS) were recorded and evaluated among survival groups. Results Post-resuscitation myocardial function and sublingual microcirculation were improved in MCC950 compared with control (p < 0.05). IL-1β and cTnI were decreased in MCC950 compared to control (p < 0.01). The MCC950 treated groups showed significantly reduced ASC, caspase-1, and IL-1β compared with the control group (p < 0.05). Survival at 48 h after ROSC was greater in MCC950 (p < 0.05) with improved NDS (p < 0.05). Conclusion Administration of MCC950 following ROSC mitigates post-resuscitation myocardial dysfunction and improves survival.


Author(s):  
Yong He ◽  
Guoxing Wang ◽  
Chuang Li ◽  
Yuxing Wang ◽  
Qian Zhang

Abstract Background MiRNA-155 and miRNA-145 have been demonstrated to function as a key regulator in the development of the cardiovascular system. Recent experimental and clinical studies have indicated the cardioprotective role of sildenafil during ischemia/reperfusion (I/R) injury. This study was designed to investigate if administration of sildenafil will attenuate post-resuscitation myocardial dysfunction by regulating miRNA-155 and miR-145 expressions. Methods Thirty-two male pigs (weighing 30 ± 2 kg) were randomly divided into 4 groups, sildenafil group (n = 8), sildenafil +NG-nitro-l-arginine methyl ester (L-NAME) (20 mg/kg L) group (n = 8), saline (SA group, n = 8); and sham operation group (sham group, n = 8). Eight minutes of untreated VF was followed by defibrillation in anesthetized, closed-chest pigs. Hemodynamic status and blood samples were obtained at 0 min, 0.5, 1, 2, 4 and 6 h after return of spontaneous circulation (ROSC), and the hearts were removed and analyzed under electron microscopy, quantitative real-time polymerase chain reaction and ultra structural analysis were performed to evaluate myocardial injury. Results Compared with the sildenafil + L-NAME and saline groups, the sildenafil group had better outcomes in terms of hemodynamic and oxygen metabolism parameters as well as 24-h survival rate, and attenuated myocardial injury; In this study, CA pigs showed evidently increased levels of miR-155-5p and miR-145-5p, while the sildenafil treatment decreased the levels of miR-155-5p and miR-145-5p in CA pigs. In addition, the levels of eNOS was decreased in CA pigs, validating sildenafil attenuating post-resuscitation myocardial dysfunction by regulating miRNA-155 and miR-145 expressions. Conclusions Sildenafil group had better outcomes in terms of hemodynamic and oxygen metabolism parameters as well as 24-h survival rate, inhibited the increases in the miR-155-5p and miR-145-5p levels and attenuated myocardial injury in a porcine model of CA and resuscitation.


Sign in / Sign up

Export Citation Format

Share Document