Abstract P215: β3-Adrenergic Receptor Mediated NOS Signaling in Cardiomyocytes

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Vabren L Watts ◽  
Xiaolin Niu ◽  
Karen L Miller ◽  
Lili A Barouch

Beta3 -adrenergic receptors play a pivotal role in modulating cardiac function, though their precise role in the heart remains controversial. We have recently demonstrated alterations in Ca 2+ -dependent NOS isoforms and decreased NOS activity in left ventricular tissue of beta3 -/- mice after pressure overload. However, the exact manner in which beta3-AR signaling regulates these isoforms to stimulate NOS activity at the cardiomyocyte level is not well understood. In this study we used a specific beta3-AR agonist, BRL37344 (BRL), to assess the role of beta3-AR in eNOS and nNOS regulation in hypertrophied isolated neonatal rat ventricular cardiomyocytes (NRVM). To induce hypertrophy we pretreated cells with norepinephrine for 72 hours, which resulted in a 70% increase in cell size and a 25% increase in beta3-AR mRNA expression as compared with non-hypertrophied cells, analyzed by immunocytochemistry and real-time PCR. In hypertrophied cardiomyocytes, BRL administration lead to a time-dependent 5-fold increase in NOS activity, measured by the arginine-to-citrulline conversion assay. beta3-activation also caused a 1.5-fold increase in nNOS phosphorylation at positive regulatory site Ser1416, and dephosphorylation of negative regulatory site Ser847 as compared with unstimulated control. NOS activity and nNOS phosphorylation overlapped in time. In addition BRL induced phosphorylation eNOS-Ser114, which indicates eNOS deactivation. Pretreatment with pertussis toxin (PTX) suppressed BRL-induced nNOS-Ser1416 phosphorylation, nNOS-Ser847 dephosphorylation, and NOS activity, suggesting G i/o dependency. Taken together, our data suggest that BRL regulates NOS signaling in ventricular cardiomyocytes via phosphorylation regulation of nNOS. To our knowledge this is first study to demonstrate a role for nNOS phosphorylation as a key factor in beta3-AR signaling. These results contribute significantly to our understanding the negative inotropic properties of myocardial beta3-AR at cellular levels during cardiac sympathetic overstimulation, and will ultimately aid in drug discoveries that target the molecular mechanisms associated heart failure.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Vabren L Watts ◽  
Fernando M Sepulveda ◽  
Oscar H Cingolani ◽  
Xiaolin Niu ◽  
Karen L Miller ◽  
...  

Objective: The aim of this study is to identify the mechanisms involved in β3-adrenoreceptor (β3-AR)-dependent cardiac protection via nNOS signaling in cardiomyocytes in the setting of hypertrophy. Background: β3-AR and its downstream signaling pathways are recognized as novel modulators of heart function. Unlike β1- and β2-ARs, β3-ARs are stimulated at high catecholamine concentrations and induce negative inotropic effects, it serves as a “brake” to protect the heart from catecholamine overstimulation. We previously showed that β3-agonism restored left ventricular function, generated nitric oxide, and suppressed reactive oxygen species in mouse myocardium after pressure overload. Interestingly, cardioprotection was lost after acute nNOS inhibition and in nNOS -/- animals. Methods: Neonatal rat ventricular cardiomyocytes (NRVMs) were isolated from 2-4 day old Sprague-Dawley pups. Cells were treated with hypertrophic agents (angiotensin II, endothelin-1, and norepinephrine), the specific β3-AR agonist (BRL-37433),and phosphometic Sindbis viruses for nNOS. Results: Forty-eight hours of ET-1 (100nM) or 72 hours of NE (100μ M) treatment increased cell size and β3-AR mRNA expression vs. untreated cells. In hypertrophied cardiomyocytes, BRL (75nM) reduced cell size and induced NOS activity, nNOS phosphorylation at stimulatory site Ser1412, dephosphorylation of deactivation site Ser847, and ROS suppression. BRL-dependent NOS activity and ROS suppression were both attenuated by the nNOS inhibitor L-VNIO. NOS activity was also attenuated by phosphomemetic mutants Ser1412A (constitutively dephosphorylated) and Ser847D (constitutively phosphorylated). In addition, G i/o and Akt inhibition suppressed BRL-induced nNOS-Ser1412 phosphorylation and NOS activity. Conclusion: Our data suggest that BRL regulates β3-specific myocardial NOS activity via alterations in nNOS phosphorylation in isolated hypertrophied myocytes and failing hearts of murine animals. This is the first study to demonstrate a role for nNOS phosphorylation as a key factor in cardiac myocyte and β3-AR signaling. These results contribute significantly to our understanding of the cardiac protection.


Author(s):  
Mortimer Korf-Klingebiel ◽  
Marc R. Reboll ◽  
Felix Polten ◽  
Natalie Weber ◽  
Felix Jäckle ◽  
...  

Background: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete myeloid-derived growth factor (MYDGF) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. Methods: We defined the cellular sources and function of MYDGF in wild-type, Mydgf -deficient ( Mydgf -/- ), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca 2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. Results: MYDGF protein abundance increased in the left ventricular (LV) myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf -/- mice had no apparent phenotype at baseline, they developed more severe LV hypertrophy and contractile dysfunction during pressure overload than wild-type mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein coupled receptor agonist-induced hypertrophy and augmented sarco/endoplasmic reticulum Ca 2+ ATPase 2a (SERCA2a) expression in cultured neonatal rat cardiomyocytes by enhancing PIM1 serine/threonine kinase expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf -/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca 2+ cycling and sarcomere function compared to cardiomyocytes from pressure-overloaded wild-type mice. Transplanting Mydgf -/- mice with wild-type bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf -/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded wild-type mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated LV hypertrophy and dysfunction, and improved survival. Conclusions: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Rangarajan Nadadur ◽  
Salil Sharma ◽  
Jingyuan Li ◽  
Mansoureh Eghbali

Heart failure is generally characterized by increased fibrosis and inflammation, which leads to functional and contractile defects. We have previously shown that short-term estrogen (E2) treatment can rescue pressure overload-induced decompensated heart failure (HF) in mice. Here, we investigate the anti-inflammatory and anti-fibrotic effects of E2 on reversing the adverse remodeling of the left ventricle which occurs during the progression to heart failure. Trans-aortic constriction procedure was used to induce HF. Once the ejection fraction reached ∼30%, one group of mice was sacrificed and the other group was treated with E2 (30 αg/kg/day) for 10 days. In vitro, co-cultured neonatal rat ventricular myocytes and fibroblasts were treated with Angiotensin II (AngII) to simulate cardiac stress, both in the presence or absence of E2. In vivo RT-PCR showed that the transcript levels of the pro-fibrotic markers Collagen I, TGFβ, Fibrosin 1 (FBRS) and Lysil Oxidase (LOX) were significantly upregulated in HF (from 1.00±0.16 to 1.83±0.11 for Collagen 1, 1±0.86 to 4.33±0.59 for TGFβ, 1±0.52 to 3.61±0.22 for FBRS and 1.00±0.33 to 2.88±0.32 for LOX) and were reduced with E2 treatment to levels similar to CTRL. E2 also restored in vitro AngII-induced upregulation of LOX, TGFβ and Collagen 1 (LOX:1±0.23 in CTRL, 6.87±0.26 in AngII and 2.80±1.5 in AngII+E2; TGFβ: 1±0.08 in CTRL, 3.30±0.25 in AngII and 1.59±0.21 in AngII+E2; Collagen 1: 1±0.05 in CTRL.2±0.01 in AngII and 0.65±0.02 (p<0.05, values normalized to CTRL)). Furthermore, the pro-inflammatory interleukins IL-1β and IL-6 were upregulated from 1±0.19 to 1.90±0.09 and 1±0.30 to 5.29±0.77 in the in vivo model of HF, respectively, and reversed to CTRL levels with E2 therapy. In vitro, IL-1β was also significantly increased ∼ 4 fold from 1±0.63 in CTRL to 3.86±0.14 with AngII treatment and restored to 1.29±0.77 with Ang+E2 treatment. Lastly, the anti-inflammatory interleukin IL-10 was downregulated from 1.00±0.17 to 0.49±0.03 in HF and reversed to 0.67±0.09 in vivo with E2 therapy (all values normalized to CTRL). This data strongly suggests that one of the mechanisms for the beneficial action of estrogen on left ventricular heart failure is through reversal of inflammation and fibrosis.


1994 ◽  
Vol 266 (1) ◽  
pp. H68-H78 ◽  
Author(s):  
C. R. Cory ◽  
R. W. Grange ◽  
M. E. Houston

The loss of load-sensitive relaxation observed in the pressure-overloaded heart may reflect a strategy of slowed cytosolic Ca2+ uptake to yield a prolongation of the active state of the muscle and a decrease in cellular energy expenditure. A decrease in the potential of the sarcoplasmic reticulum (SR) to resequester cytosolic Ca2+ during diastole could contribute to this attenuated load sensitivity. To test this hypothesis, both in vitro mechanical function of anterior papillary muscles and the SR Ca2+ sequestration potential of female guinea pig left ventricle were compared in cardiac hypertrophy (Hyp) and sham-operated (Sham) groups. Twenty-one days of pressure overload induced by coarctation of the suprarenal, subdiaphragmatic aorta resulted in a 36% increase in left ventricular mass in the Hyp. Peak isometric tension, the rate of isometric tension development, and the maximal rates of isometric and isotonic relaxation were significantly reduced in Hyp. Load-sensitive relaxation were significantly reduced in Hyp. Load-sensitive relaxation quantified by the ratio of a rapid loading to unloading force step in isotonically contracting papillary muscle was reduced 50% in Hyp muscles. Maximum activity of SR Ca(2+)-adenosinetriphosphatase (ATPase) measured under optimal conditions (37 degrees C; saturating Ca2+) was unaltered, but at low free Ca2+ concentrations (0.65 microM), it was decreased by 43% of the Sham response. Bivariate regression analysis revealed a significant (r = 0.84; P = 0.009) relationship between the decrease in SR Ca(2+)-ATPase activity and the loss of load-sensitive relaxation after aortic coarctation. Stimulation of the SR Ca(2+)-ATPase by the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase resulted in a 2.6-fold increase for Sham but only a 1.6-fold increase for Hyp. Semiquantitative Western blot radioimmunoassays revealed that the changes in SR Ca(2+)-ATPase activity were not due to decreases in the content of the Ca(2+)-ATPase protein or phospholamban. Our data directly implicate a role for decreased SR function in attenuated load sensitivity. A purposeful downregulation of SR Ca2+ uptake likely results from a qualitative rather than a quantitative change in the ATPase and possibly one of its key regulators, phospholamban.


1990 ◽  
Vol 259 (6) ◽  
pp. L415-L425 ◽  
Author(s):  
P. E. Roberts ◽  
D. M. Phillips ◽  
J. P. Mather

A novel epithelial cell from normal neonatal rat lung has been isolated, established, and maintained for multiple passages in the absence of serum, without undergoing crisis or senescence. By careful manipulation of the nutrition/hormonal microenvironment, we have been able to select, from a heterogeneous population, a single epithelial cell type that can maintain highly differentiated features in vitro. This cell type has characteristics of bronchiolar epithelial cells. A clonal line, RL-65, has been selected and observed for greater than 2 yr in continuous culture. It has been characterized by ultrastructural, morphological, and biochemical criteria. The basal medium for this cell line is Ham's F12/Dulbecco's modified Eagle's (DME) medium plus insulin (1 micrograms/ml), human transferrin (10 micrograms/ml), ethanolamine (10(-4) M), phosphoethanolamine (10(-4) M), selenium (2.5 x 10(-8) M), hydrocortisone (2.5 x 10(-7) M), and forskolin (5 microM). The addition of 150 micrograms/ml of bovine pituitary extract to the defined basal medium stimulates a greater than 10-fold increase in cell number and a 50- to 100-fold increase in thymidine incorporation. The addition of retinoic acid results in further enhancement of cell growth and complete inhibition of keratinization. We have demonstrated a strategy that may be applicable to isolating other cell types from the lung and maintaining their differentiated characteristics for long-term culture in vitro. Such a culture system promises to be a useful model in which to study cellular events associated with differentiation and proliferation in the lung and to better understand the molecular mechanisms involved in these events.


2018 ◽  
Vol 19 (10) ◽  
pp. 2941 ◽  
Author(s):  
Riko Koyama ◽  
Tiphaine Mannic ◽  
Jumpei Ito ◽  
Laurence Amar ◽  
Maria-Christina Zennaro ◽  
...  

Activation of the mineralocorticoid receptor (MR) in the heart is considered to be a cardiovascular risk factor. MR activation leads to heart hypertrophy and arrhythmia. In ventricular cardiomyocytes, aldosterone induces a profound remodeling of ion channel expression, in particular, an increase in the expression and activity of T-type voltage-gated calcium channels (T-channels). The molecular mechanisms immediately downstream from MR activation, which lead to the increased expression of T-channels and, consecutively, to an acceleration of spontaneous cell contractions in vitro, remain poorly investigated. Here, we investigated the putative role of a specific microRNA in linking MR activation to the regulation of T-channel expression and cardiomyocyte beating frequency. A screening assay identified microRNA 204 (miR-204) as one of the major upregulated microRNAs after aldosterone stimulation of isolated neonatal rat cardiomyocytes. Aldosterone significantly increased the level of miR-204, an effect blocked by the MR antagonist spironolactone. When miR-204 was overexpressed in isolated cardiomyocytes, their spontaneous beating frequency was significantly increased after 24 h, like upon aldosterone stimulation, and messenger RNAs coding T-channels (CaV3.1 and CaV3.2) were increased. Concomitantly, T-type calcium currents were significantly increased upon miR-204 overexpression. Specifically repressing the expression of miR-204 abolished the aldosterone-induced increase of CaV3.1 and CaV3.2 mRNAs, as well as T-type calcium currents. Finally, aldosterone and miR-204 overexpression were found to reduce REST-NRSF, a known transcriptional repressor of CaV3.2 T-type calcium channels. Our study thus strongly suggests that miR-204 expression stimulated by aldosterone promotes the expression of T-channels in isolated rat ventricular cardiomyocytes, and therefore, increases the frequency of the cell spontaneous contractions, presumably through the inhibition of REST-NRSF protein.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Zhongbing Lu ◽  
John Fassett ◽  
Xin Xu ◽  
Xinli Hu ◽  
Guangshuo Zhu ◽  
...  

Endogenous adenosine can protect the overloaded heart against the development of hypertrophy and heart failure, but the contribution of A 1 receptors (A 1 R) and A 3 receptors(A 3 R) is not known. To test the hypothesis A 1 R and A 3 R can protect the heart against systolic overload, we exposed A 3 R gene deficient (A 3 R KO) mice and A 1 R KO mice to transverse aortic constriction (TAC). Contrary to our hypothesis, A 3 R KO attenuated 5 weeks TAC-induced left ventricular (LV) hypertrophy (ratio of ventricular mass/body weight increased to 7.6 ±0.3 mg/g in wild type (Wt) mice as compared with 6.3±0.4 mg/g in KO), fibrosis and dysfunction (LV ejection fraction decreased to 43±2.5% and 55±4.2% in Wt and KO mice, respectively). A 3 R KO also attenuated the TAC-induced increases of myocardial ANP and the oxidative stress markers 3-nitrotyrosine(3-NT ) and 4-hydroxynonenal. In addition, A 3 R KO significantly attenuated TAC-induced activation of multiple MAP kinase pathways, and the activation of Akt-GSK signaling pathway. In contrast, A 1 R-KO increased TAC-induced mortality, but did not alter ventricular hypertrophy or dysfunction compared to Wt mice. In mice in which extracellular adenosine production was impaired by CD73 KO, TAC caused greater hypertrophy and dysfunction, and increased myocardial 3-NT, indicates that extracellular adenosine protects heart against TAC-induced ventricular oxidative stress and hypertrophy. In neonatal rat cardiomyocytes induced to hypertrophy with phenylephrine, the adenosine analogue 2-chloroadenosine (CADO) reduced cell area, protein synthesis, ANP and 3-NT. Antagonism of A3R significantly potentiated the anti-hypertrophic effects of CADO. Our data demonstrated that extracellular adenosine exerts protective effects on the overloaded heart, but A 3 R act counter to the protective effect of adenosine. The data suggest that selective attenuation of A 3 R activity might be a novel approach to attenuate pressure overload-induced myocardial oxidative stress, LV hypertrophy and dysfunction. This research has received full or partial funding support from the American Heart Association, AHA Midwest Affiliate (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, South Dakota & Wisconsin).


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Erin L Reineke ◽  
George E Taffet ◽  
Jason T Kaelber ◽  
Heinrich Taegtmeyer ◽  
Mark L Entman ◽  
...  

The multiple adaptive pathways activated during cardiac stress must communicate with each other for an efficient response; however, little is known about the molecular mechanisms underlying this coordination. During left ventricular pressure overload induced by transverse aortic constriction (TAC), an increase in metabolic flux to meet the ATP demand is the first molecular change observed in the heart. Following initial metabolic changes, there is genetic remodeling of the metabolic machinery and activation of other acute and long-term adaptive pathways to control hypertrophy, fibrosis, and contraction. In order to better understand how the early metabolic changes affect the activation and magnitude of the downstream pathways, we treated mice with the AMPK activator AICAR for 6 days prior to TAC and then monitored effects on the cardiac stress response for 4 weeks. This treatment was performed in both WT mice and in mice lacking cardiomyocyte expression of steroid receptor coactivator-2 (SRC-2 CKO), a model we have previously shown to be genetically similar to a stressed mouse and whose function declines rapidly in response to TAC. Interestingly, we found that this small transient treatment with AICAR is sufficient to blunt hypertrophy (20% reduction) and fibrotic accumulation (56% reduction) and prevent left ventricular dilation and pleural edema. Furthermore, AICAR treatment in the SRC-2 CKO animals was able to rescue the functional decline observed post-TAC. We are currently investigating the molecular pathways underlying these changes. Our results strongly suggest that there are very early events during cardiac stress that are key determinants in the ability of the heart to adapt and maintain function under stress, even in late stages post-stress. Disruption of these determinants can lead to rapid failure, whereas their promotion could hold a key for therapeutic intervention.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Annina Kelloniemi ◽  
Jani Aro ◽  
Elina Koivisto ◽  
Heikki Ruskoaho ◽  
Jaana Rysä

Objectives: Transforming-growth-factor β-stimulated clone 22 (TSC-22) is a leucine zipper protein expressed in many tissues and possessing various transcription-modulating activities. However, its function in the heart remains largely unknown. The aim of the present study was to characterize the cardiac TSC-22 expression. Methods: Acute pressure overload was accomplished in conscious Sprague-Dawley (SD) rats by intravenous infusion of arginine 8 -vasopressin (AVP, 0.05 μg/kg/min) for 4 hours and subcutaneous infusion of angiotensin II (Ang II, 33 μg/kg/h) with and without Ang II receptor type 1 blocker losartan (400 μg/kg/h) by using osmotic minipumps for 2 weeks. Adenovirus-mediated intramyocardial gene transfer of TSC-22 was performed into left ventricle (LV) of SD rats. Experimental myocardial infarction (MI) was produced by ligation of the left anterior descending coronary artery. Cultured neonatal rat ventricular myocytes (NRVM) were treated with endothelin-1 (ET-1, 100 nM). Results: A significant 1.6-fold increase ( P <0.05) in LV TSC-22 mRNA levels was noted already after 1 hour AVP infusion. Moreover, Ang II infusion markedly upregulated TSC-22 expression, LV mRNA levels being highest at 6 hours (11-fold, P <0.001). Simultaneous infusion of losartan completely abolished Ang II-induced increase in TSC-22 mRNA levels. Adenovirus-mediated gene transfer of TSC-22 into LV resulted a 1.9-fold ( P <0.001) increase in TSC-22 mRNA levels, accompanied by upregulated BNP mRNA levels (1.4-fold, P <0.01). In response to experimental MI, TSC-22 mRNA levels were elevated 4.1-fold ( P <0.001) at 1 day and 1.9-fold ( P <0.05) at 4 weeks. In cultured NRVM, ET-1 treatment increased TSC-22 mRNA levels from 1 h to 24 h, the greatest increase being observed at 12 h (2.7-fold, P <0.001). TSC-22 protein levels were upregulated from 4 h to 24 h with the highest increase at 24 h (4.7-fold, P <0.01). Conclusion: These results indicate that TSC-22 expression is rapidly activated in response to pressure overload, MI and in ET-1 treated cultured NRVM. Moreover, adenovirus-mediated overexpression of TSC-22 mRNA was associated with elevated left ventricular BNP mRNA levels.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A M C Koop ◽  
R F Videira ◽  
L Ottaviani ◽  
E M Poels ◽  
K W Van De Kolk ◽  
...  

Abstract Introduction Heart and neural crest derivatives expressed-2 (Hand2) has been identified as an important embryonic basic helix-loop-helix-transcription factor, with different functions in the development of the first and second heart field, from which the left and right ventricle originate, respectively. Our previous work revealed that Hand2, under conditions of left ventricular (LV) pressure overload, is re-expressed in the adult heart and activates a “fetal gene” program contributing to pathological cardiac remodeling. Ablation of cardiac expression of Hand2 resulted in protection to cardiac stress and attenuated maladaptive remodeling. Purpose In this study, we aimed at unraveling the role of Hand2 during cardiac remodeling in response to right ventricular (RV) pressure overload induced by pulmonary artery banding (PAB). Methods Hand2F/F and MCM− Hand2F/F mice were treated with tamoxifen (control and knockout, respectively) and subjected to six weeks of RV pressure overload induced by PAB. Echocardiographic and MRI derived hemodynamic parameters, and molecular remodelling were assessed for experimental groups and compared to sham-operated controls (Fig. 1a). RNA sequencing and gene ontology enrichment analysis were performed to compare the dysregulated genes between the pressure overloaded RV of the control and Hand2 knockout mice. Results After six weeks of increased pressure load (Fig. 1b), levels of Hand2 increased in the control banded animals but, as expected, remained absent in the knockout hearts (Fig. 1c). In contrast to the what was previously observed for the pressure overloaded LV, in the pressure loaded RV, Hand2 depletion resulted in more severe remodelling and dysfunction as reflected by increased hypertrophic growth, increased RV end-diastolic and end-systolic volumes as well as decreased RV ejection fraction (Fig. 1d–g). In addition, RNA sequencing revealed a distinct set of genes that are dysregulated in the pressure-overloaded RV, compared to the previously described pressure-overloaded LV. These include components of the extracellular matrix structure, collagen assembly and organization and several types of collagens. Genes associated with inflammation response, adhesion and muscle organization were also affected in the RV of the Hand2 KO mice (Fig. 1h). Figure 1 Conclusion Cardiac-specific depletion of Hand2 is associated with severe cardiac dysfunction in conditions of RV pressure overload. While inhibiting Hand2 expression can prevent cardiac dysfunction in conditions of LV pressure overload, the same does not hold true for conditions of RV pressure overload. This study highlights the need to better understand the molecular mechanisms driving pathological remodelling of the RV, in contrast to the LV, in order to better diagnose and treat patients with RV or LV failure.


Sign in / Sign up

Export Citation Format

Share Document