The Impact of Unaware Perception on Bodily Interaction in Virtual Reality Environments

2009 ◽  
Vol 18 (6) ◽  
pp. 413-420 ◽  
Author(s):  
Marcos Hilsenrat ◽  
Miriam Reiner

Unaware haptic perception is often inferred but rarely demonstrated empirically. In this paper we present evidence for the effects of unaware haptic stimuli on users' motor interaction with virtual objects. Using a 3D hapto-visual virtual reality, we ran a texture-difference recognition test in which subjects glided a pen-like stylus along a virtual surface with varying roughness. We found that subjects were not aware of changes in texture roughness below a threshold limit, yet the normal force they applied changed. Subjects did not recognize on a cognitive level changes in the sensory cues, but behaved as if they did. These results suggest that performance can be affected through subliminal cues. Based on results from visual perception studies, we also tested the impact of context background conditions on the perception of unaware cues. We measured the threshold of awareness to changes in texture for several reference stimuli. We found that indeed, as in visual perception, this threshold for discriminating between the roughness of surfaces increases when the texture gets smoother, that is, sensitivity changes as a function of the background context. The implications of this work are mainly in the design of VR, especially for the remote manipulation of objects.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4663
Author(s):  
Janaina Cavalcanti ◽  
Victor Valls ◽  
Manuel Contero ◽  
David Fonseca

An effective warning attracts attention, elicits knowledge, and enables compliance behavior. Game mechanics, which are directly linked to human desires, stand out as training, evaluation, and improvement tools. Immersive virtual reality (VR) facilitates training without risk to participants, evaluates the impact of an incorrect action/decision, and creates a smart training environment. The present study analyzes the user experience in a gamified virtual environment of risks using the HTC Vive head-mounted display. The game was developed in the Unreal game engine and consisted of a walk-through maze composed of evident dangers and different signaling variables while user action data were recorded. To demonstrate which aspects provide better interaction, experience, perception and memory, three different warning configurations (dynamic, static and smart) and two different levels of danger (low and high) were presented. To properly assess the impact of the experience, we conducted a survey about personality and knowledge before and after using the game. We proceeded with the qualitative approach by using questions in a bipolar laddering assessment that was compared with the recorded data during the game. The findings indicate that when users are engaged in VR, they tend to test the consequences of their actions rather than maintaining safety. The results also reveal that textual signal variables are not accessed when users are faced with the stress factor of time. Progress is needed in implementing new technologies for warnings and advance notifications to improve the evaluation of human behavior in virtual environments of high-risk surroundings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Géraldine Fauville ◽  
Anna C. M. Queiroz ◽  
Erika S. Woolsey ◽  
Jonathan W. Kelly ◽  
Jeremy N. Bailenson

AbstractResearch about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.


Author(s):  
Jordan Sasser ◽  
Fernando Montalvo ◽  
Rhyse Bendell ◽  
P. A. Hancock ◽  
Daniel S. McConnell

Prior research has indicated that perception of acceleration may be a direct process. This direct process may be conceptually linked to the ecological approach to visual perception and a further extension of direct social perception. The present study examines the effects of perception of acceleration in virtual reality on participants’ perceived attributes (perceived intelligence and animacy) of a virtual human-like robot agent and perceived agent competitive/cooperativeness. Perceptual judgments were collected after experiencing one of the five different conditions dependent on the participant’s acceleration: mirrored acceleration, faster acceleration, slowed acceleration, varied acceleration resulting in a win, and varied acceleration resulting in a loss. Participants experienced each condition twice in a counterbalanced fashion. The focus of the experiment was to determine whether different accelerations influenced perceptual judgments of the observers. Results suggest that faster acceleration was perceived as more competitive and slower acceleration was reported as low in animacy and perceived intelligence.


2018 ◽  
Vol 10 ◽  
pp. 117957351881354 ◽  
Author(s):  
Thais Massetti ◽  
Talita Dias da Silva ◽  
Tânia Brusque Crocetta ◽  
Regiani Guarnieri ◽  
Bruna Leal de Freitas ◽  
...  

Background: Virtual reality (VR) experiences (through games and virtual environments) are increasingly being used in physical, cognitive, and psychological interventions. However, the impact of VR as an approach to rehabilitation is not fully understood, and its advantages over traditional rehabilitation techniques are yet to be established. Method: We present a systematic review which was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). During February and March of 2018, we conducted searches on PubMed (Medline), Virtual Health Library Search Portal databases (BVS), Web of Science (WOS), and Embase for all VR-related publications in the past 4 years (2015, 2016, 2017, and 2018). The keywords used in the search were “neurorehabilitation” AND “Virtual Reality” AND “devices.” Results: We summarize the literature which highlights that a range of effective VR approaches are available. Studies identified were conducted with poststroke patients, patients with cerebral palsy, spinal cord injuries, and other pathologies. Healthy populations have been used in the development and testing of VR approaches meant to be used in the future by people with neurological disorders. A range of benefits were associated with VR interventions, including improvement in motor functions, greater community participation, and improved psychological and cognitive function. Conclusions: The results from this review provide support for the use of VR as part of a neurorehabilitation program in maximizing recovery.


Addiction ◽  
2013 ◽  
Vol 108 (5) ◽  
pp. 977-984 ◽  
Author(s):  
Ashok S. Jansari ◽  
Daniel Froggatt ◽  
Trudi Edginton ◽  
Lynne Dawkins

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Don Amila Sajeevan Samarasinghe ◽  
Imelda Saran Piri

PurposeThe purpose of this paper is to evaluate the impact of visual models on the ability of construction students to assess design buildability.Design/methodology/approachThe study engaged 45 construction students from one selected tertiary education institute in New Zealand. The data collection process involved meeting the students face-to-face and demonstrating the VR model to them, after which the students completed an online questionnaire and assessed design buildability using both 2D drawing and virtual reality (VR) models. To make this assessment, the participants considered a residential earth building modelled to promote sustainable building features. The assessment process required the participants to evaluate the design buildability of the same building design using a 2D drawing and a 3D VR model.FindingsThe study found that VR models have significant advantages for assessing design buildability. Students measured 16.80% higher average buildability with the 3D VR model compared to the 2D drawing. The participants in the evaluation felt that the visual model significantly improved the comprehensibility of complex designs, which helped identify and manage design buildability (overall, 83% of participants strongly supported this).Originality/valueThe paper showed construction digitisation such as VR, augmented reality and building information modelling is highly cooperative as it can easily be made available for online learning. Thus, the findings support construction educators use online-based VR learning to promote efficient teaching of design buildability to students.


Sign in / Sign up

Export Citation Format

Share Document