Alerting and Message Components in Songs of Rufous-Sided Towhees

Behaviour ◽  
1981 ◽  
Vol 76 (3-4) ◽  
pp. 223-249 ◽  
Author(s):  
Douglas G. Richards

AbstractIn numerous species of passerine birds the initial few notes of the song have a narrow frequency range and wide temporal spacing when compared with the rest of the song. This structure is well adapted for high detectability when the song is acoustically degraded during passage through the environment. The song of the rufous-sided towhee (Pipilo eythrophtalmus) consists of relatively tonal introductory syllables followed by a complex rapid trill. The trill is capable of carrying more information than the introduction, but is inherently less detectable at a distance owing to degradation by reverberation, amplitude fluctuation, and frequency-dependent attenuation. Signal detection theory predicts that the detectability of the trill will be increased when it is preceded by the introductory syllables, owing to the removal of uncertainty concerning the time of arrival of the signal. This is alerted detection. I performed field experiments using playback of recorded song to towhees to test the hypothesis that these introductory syllables facilitate detection of conspecific song at a distance. Tape recordings of normal and artificially degraded full songs, introduction, and trills were played to territorial male towhees. Normal songs, degraded songs, and normal trills elicited strong territorial defense responses, indicating recognition as adequate species-specific song, and confirming that sufficient information is contained in the trill for species recognition. Degraded trills alone elicited little response. Both normal and degraded introductions also elicited little response, demonstrating that the increased response to a degraded full song over that to a degraded trill is not due to any species-specific characteristics of the introduction, but rather to its function as an alerting stimulus.

Behaviour ◽  
2001 ◽  
Vol 138 (4) ◽  
pp. 511-524 ◽  
Author(s):  
Nicolas Mathevon ◽  
Thierry Aubin

AbstractThe aim of the present study is to investigate the male blackcap decoding process allowing species-specific recognition in the perspective of possible adaptations for communication in dense vegetation. We played back modified and natural blackcap songs to territorial blackcap males and scored the reaction of the territory owners. We examined the response of blackcap males to artificial songs manipulated to reflect a possible environmental degradation. Territory owners respond strongly even to crude models of conspecific song. Only when frequency modulation is suppressed or the number of syllables in the song is drastically reduced do the territory owners cease to respond. The importance of frequency modulation for species recognition is further emphasised by territory owners' strong response to synthetic sounds, in which rapid frequency modulation is superimposed by a less rapid and a slow frequency modulation within the frequency range of conspecific song. Our results have then put forward the acoustic basis for the initial perception of potential conspecifics. It appears that blackcap species-specific decoding process seems highly tolerant towards song structure modifications. May be this is an adaptation to the propagation acoustic constraints imposed by the forest environment.


2021 ◽  
Vol 11 (12) ◽  
pp. 5415
Author(s):  
Aleksandr Gorst ◽  
Kseniya Zavyalova ◽  
Aleksandr Mironchev ◽  
Andrey Zapasnoy ◽  
Andrey Klokov

The article investigates the near-field probe of a special design to account for changes in glucose concentration. The probe is designed in such a way that it emits radiation in both directions from its plane. In this paper, it was proposed to modernize this design and consider the unidirectional emission of the probe in order to maximize the signal and reduce energy loss. We have done extensive research for both bidirectional and unidirectional probe designs. Numerical simulations and field experiments were carried out to determine different concentrations of glucose (0, 4, 5.3, 7.5 mmol/L). Numerical modeling of a unidirectional probe showed that the interaction of radiation generated by such a probe with a multilayer structure simulating a human hand showed a better result and high sensitivity compared to a bidirectional probe. Further, based on the simulation results, a phantom (physical model) of a human hand was recreated from layers with dielectric properties as close as possible to the properties of materials during simulation. The probe was constructed from a copper tube and matched both the geometric and physical parameters of the model. The experimental measurement was carried out using a vector network analyzer in the frequency range 2–10 GHz. The experimental measurement was carried out using a vector network analyzer in the frequency range 2–10 GHz for the unidirectional and bidirectional probes. Further, the results of the experiment were compared with the results of numerical simulation. According to the results of multiple experiments, it was found that the average deviation between the concentrations was 2 dB for a unidirectional probe and 0.4 dB for a bidirectional probe. Thus, the sensitivity of the unidirectional probe was 1.5 dB/(mmol/L) for the bidirectional one 0.3 dB/(mmol/L). Thus, the improved design of the near-field probe can be used to record glucose concentrations.


2020 ◽  
Author(s):  
Kevin M. King ◽  
Gavin J. Eyres ◽  
Jon West ◽  
Clara Siraf ◽  
Pavel Matusinsky ◽  
...  

Eyespot, caused by the related fungal pathogens Oculimacula acuformis (OA) and O. yallundae (OY), is an important cereal stem-base disease in temperate parts of the world. Both species are dispersed mainly by splash-dispersed conidia but are also known to undergo sexual reproduction yielding apothecia containing ascospores. Field diagnosis of eyespot can be challenging with other pathogens causing similar symptoms, which complicates eyespot management strategies. Differences between OA and OY (e.g. host pathogenicity and fungicide sensitivity) require that both be targeted for effective disease management. Here, we develop and apply two molecular methods for species-specific and mating-type (MAT1-1 or MAT1-2) discrimination of OA and OY isolates. First, a multiplex PCR-based diagnostic assay targeting the MAT idiomorph region was developed allowing simultaneous determination of both species and mating type. This multiplex-PCR assay was successfully applied to type a global collection of isolates. Second, the development of loop-mediated isothermal amplification (LAMP) assays targeting beta-tubulin sequences is described, which allow fast (<9 min) species-specific discrimination of global OA and OY isolates. The LAMP assay can detect very small amounts of target DNA (1 pg) and was successfully applied in planta. In addition, mating-type specific LAMP assays were also developed for rapid (<12 min) genotyping of OA and OY isolates. Finally, the multiplex PCR-based diagnostic was applied, in conjunction with spore trapping in field experiments, to provide evidence of the wind dispersal of ascospores from a diseased crop. The results indicate an important role of the sexual cycle in the dispersal of eyespot.


1991 ◽  
Vol 131 ◽  
pp. 171-179
Author(s):  
J. E. Conway

AbstractA method of improving image fidelity by using observations at multiple frequencies is described. We discuss the power and possible limitations of the technique. Results of narrow frequency range observations with MERLIN and global VLBI are presented. We conclude with a consideration of the possible future impact of this technique.


Author(s):  
Thomas W. Secord ◽  
Troy R. Louwagie ◽  
Robert J. Kopas

Abstract Resonance is known to reduce the input energy requirements of various actuator systems. The favorable effects of resonance, however, are limited to a narrow frequency range. To overcome this limitation, we describe a general framework for using discrete units of inertia that can be activated in a binary sense to move a resonant frequency across a desired frequency range. We also enumerate the generalized physical cases in which actuators can energetically benefit from resonance. We develop closed-form optimal results for the idealized case of two binary additive inertial units and extend this to a general optimization scheme for higher numbers of units that introduce parasitic friction and added stiffness. We illustrate the concept of binary tuning with a representative linear translational system powered by a voice coil motor (VCM). The experimental results show good agreement with the intended theoretical design and show the general utility of the binary additive inertia approach.


2015 ◽  
Vol 282 (1812) ◽  
pp. 20150832 ◽  
Author(s):  
Johanna Chemnitz ◽  
Petra C. Jentschke ◽  
Manfred Ayasse ◽  
Sandra Steiger

Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load—key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research.


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1124 ◽  
Author(s):  
Junhao Luo ◽  
Junhua Wang ◽  
Zhijian Fang ◽  
Jianwei Shao ◽  
Jiangui Li

2014 ◽  
Vol 501-504 ◽  
pp. 861-866
Author(s):  
Yuan Tian ◽  
Nan Zhang ◽  
Wei Guo Yang ◽  
Jia Ming Niu

Using field experiments, the vibration effects of historic tower induced by planed railway line are estimated. The vibrations include the construction vibration and the traffic-induced vibration. The results show that the blasting construction leads to the significant increase in vertical velocity and acceleration. There is no difference between the background vibration of field and foundation of tower. Different types of the sites soil around the tower cause little change. Each measurement time showed an upward trend of vibration level with the increase of frequency. The closer the tower is to the vibration source, the larger the structural vibrations would be. The dominant frequency range for highway-induced vibration is 10-20Hz. For train-induced vibration, the dominant frequency range is more than 40Hz. Surface waves will result in amplification phenomenon of vibration velocity of ancient structures within a certain range.


2013 ◽  
Vol 110 (5) ◽  
pp. 1087-1096 ◽  
Author(s):  
Heesoo Kim ◽  
Shaowen Bao

Cortical sensory representation is highly adaptive to the environment, and prevalent or behaviorally important stimuli are often overrepresented. One class of such stimuli is species-specific vocalizations. Rats vocalize in the ultrasonic range >30 kHz, but cortical representation of this frequency range has not been systematically examined. We recorded in vivo cortical electrophysiological responses to ultrasonic pure-tone pips, natural ultrasonic vocalizations, and pitch-shifted vocalizations to assess how rats represent this ethologically relevant frequency range. We find that nearly 40% of the primary auditory cortex (AI) represents an octave-wide band of ultrasonic vocalization frequencies (UVFs; 32–64 kHz) compared with <20% for other octave bands <32 kHz. These UVF neurons respond preferentially and reliably to ultrasonic vocalizations. The UVF overrepresentation matures in the cortex before it develops in the central nucleus of inferior colliculus, suggesting a cortical origin and corticofugal influences. Furthermore, the development of cortical UVF overrepresentation depends on early acoustic experience. These results indicate that natural sensory experience causes large-scale cortical map reorganization and improves representations of species-specific vocalizations.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christopher Bergevin ◽  
Chandan Narayan ◽  
Joy Williams ◽  
Natasha Mhatre ◽  
Jennifer KE Steeves ◽  
...  

Khoomei is a unique singing style originating from the republic of Tuva in central Asia. Singers produce two pitches simultaneously: a booming low-frequency rumble alongside a hovering high-pitched whistle-like tone. The biomechanics of this biphonation are not well-understood. Here, we use sound analysis, dynamic magnetic resonance imaging, and vocal tract modeling to demonstrate how biphonation is achieved by modulating vocal tract morphology. Tuvan singers show remarkable control in shaping their vocal tract to narrowly focus the harmonics (or overtones) emanating from their vocal cords. The biphonic sound is a combination of the fundamental pitch and a focused filter state, which is at the higher pitch (1–2 kHz) and formed by merging two formants, thereby greatly enhancing sound-production in a very narrow frequency range. Most importantly, we demonstrate that this biphonation is a phenomenon arising from linear filtering rather than from a nonlinear source.


Sign in / Sign up

Export Citation Format

Share Document