Nematostatic effects of a leaf extract from Crotalaria virgulata subsp. grantiana on Meloidogyne incognita and its use to protect tomato roots

Nematology ◽  
2004 ◽  
Vol 6 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Philippe Jourand ◽  
Sylvie Rapior ◽  
Mireille Fargette ◽  
Thierry Mateille

Abstract An aqueous extract from leaves of Crotalaria virgulata subsp. grantiana was assayed for its effects on second-stage juveniles of Meloidogyne incognita. The biological activity was nematostatic; nematodes were not killed but were completely paralysed in a 1 mg/ml (w/v) extract: the LD50 equivalent was estimated to be 0.5 mg/ml. The effect was reversible: juveniles previously paralysed by C. grantiana extract recovered complete mobility in water and were able to infest a susceptible tomato plant. Freeze-dried aqueous extract from C. grantiana leaves added to a sterile sandy substrate at 1 mg/ml protected susceptible tomato plants from M. incognita infestation. This suggests a promising use of C. grantiana as both a green manure and natural alternative to synthetic chemicals in nematode population control, especially in integrated pest management for vegetable crops in organic agriculture of tropical and temperate areas.

2013 ◽  
Vol 103 (8) ◽  
pp. 833-840 ◽  
Author(s):  
Samira Khallouk ◽  
Roger Voisin ◽  
Ulysse Portier ◽  
Joël Polidori ◽  
Cyril Van Ghelder ◽  
...  

Root-knot nematodes (RKNs) (Meloidogyne spp.) are highly polyphagous pests that parasitize Prunus crops in Mediterranean climates. Breeding for RKN-resistant Prunus cultivars, as an alternative to the now-banned use of nematicides, is a real challenge, because the perennial nature of these trees increases the risk of resistance breakdown. The Ma plum resistance (R) gene, with a complete spectrum, and the RMia peach R gene, with a more restricted spectrum, both provide total control of Meloidogyne incognita, the model parthenogenetic species of the genus and the most important RKN in terms of economic losses. We investigated the durability of the resistance to this nematode conferred by these genes, comparing the results obtained with those for the tomato Mi-1 reference gene. In multiyear experiments, we applied a high and continuous nematode inoculum pressure by cultivating nematode-infested susceptible tomato plants with either Prunus accessions carrying Ma or RMia R genes, or with resistant tomato plants carrying the Mi-1 gene. Suitable conditions for Prunus development were achieved by carrying out the studies in a glasshouse, in controlled conditions allowing a short winter leaf fall and dormancy. We first assessed the plum accession ‘P.2175’, which is heterozygous for the Ma gene, in two successive 2-year evaluations, for resistance to two M. incognita isolates. Whatever the isolate used, no nematodes reproducing on P.2175 were detected, whereas galls and nematodes reproducing on tomato plants carrying Mi-1 were observed. In a second experiment with the most aggressive isolate, interspecific full-sib material (P.2175 × [‘Garfi’ almond × ‘Nemared’ peach]), carrying either Ma or RMia (from Nemared) or both (in the heterozygous state) or neither of these genes, was evaluated for 4 years. No virulent nematodes developed on Prunus spp. carrying R genes, whereas galling and virulent individuals were observed on Mi-1-resistant tomato plants. Thus, the resistance to M. incognita conferred by Ma in Prunus material in both a pure-plum and an interspecific genetic background, or by RMia in an interspecific background, appears to be durable, highlighting the value of these two genes for the creation of Prunus rootstock material.


Nematology ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 509-520 ◽  
Author(s):  
Tushar K. Dutta ◽  
Stephen J. Powers ◽  
Brian R. Kerry ◽  
Hari S. Gaur ◽  
Rosane H.C. Curtis

AbstractThe rice root-knot nematode Meloidogyne graminicola normally infects rice, wheat and several other graminaceous plants. Meloidogyne incognita is a serious pest of dicotyledonous crops, although it can infect and reproduce on some cereals. This paper demonstrates and compares host recognition, development and reproduction of these two species of root-knot nematodes on rice and tomato plants. Attraction bioassays in pluronic gel clearly showed that M. incognita preferred tomato roots to rice or mustard roots, whilst M. graminicola was more attracted towards rice compared with tomato or mustard roots. Based on the attraction data from this study, it can be hypothesised that either: i) the blend of attractants and repellents are different in good and poor hosts; or ii) relatively long-range attractants, together with shorter-range repellents, might affect nematode movement patterns. Some host specific attractants might also be involved. Meloidogyne incognita was able to invade and develop to adult female but did not produce eggs in rice roots. By contrast, M. graminicola developed and reproduced faster on both rice and tomato plants compared with M. incognita. Nevertheless, second-stage juveniles of both these root-knot nematodes showed a similar pattern of distribution inside the roots, preferring to accumulate at the root tips of rice or in the vascular cylinder and cortical region of tomato.


2021 ◽  
pp. 520-525
Author(s):  
Udalova ◽  
Zinovieva

Selenium (Se), silicon (Si) and nickel (Ni) are essential microelements in plants. Their deficiency can have a significant impact on the growth and development of plants, and on nematode infestation. The study of the possibility of regulating the interaction of plants with root-knot nematode by means of exogenous foliar treatments with solutions of nanosized Se, Si and Ni has been conducted. Susceptible tomato plants were treated in the seed phase and the growing plants were sprayed with aqueous solutions of nanosized microelements (Se – 0.6; Ni – 0.1; Si – 2 mg/l). The influence of treatments on the infestation of tomatoes by the root-knot nematode Meloidogyne incognita, as well as on the development of plants and the quantitative and qualitative composition of photosynthetic pigments, as the most sensitive indicator of the pathological state of plants, was studied. A decrease in the infestation of tomatoes with a nematode in the Se<Si<Ni series is shown. The treated plants were dominated by larvae. An increase in the entire pool of photosynthetic pigments or individual pigments was observed when treated with nanosized microelements. The greatest effect on the infestation of the root system, the development of nematodes and the content of photosynthetic pigments was obtained when plants were treated with nanosized nickel. It is obvious that these elements have an individual metabolic effect on plant tissues, but it is obvious that they have a beneficial effect on tomato plants, which allows us to consider them as inductors that increase resistance to root-knot nematode.


Nematology ◽  
2014 ◽  
Vol 16 (8) ◽  
pp. 889-893 ◽  
Author(s):  
Hidetaka Nishiyama ◽  
Satoru Nakagami ◽  
Akihiko Todaka ◽  
Tetsuya Arita ◽  
Takashi Ishida ◽  
...  

Meloidogyne incognita is one of the most detrimental root-knot nematode pests in the world because of its wide range of hosts, infecting almost all plant species. Following infection, this nematode induces gall formation in the root. We have found that these induced galls turn green in tomato roots exposed to light. This gall greening was light-dependent and inhibited by auxin treatment. Chlorophyll was detected in these green galls, and chloroplasts were also observed in the root-knot region. Expression of the chlorophyll a/b-binding protein-4 gene was upregulated in the galls. These results indicate that light treatment induces chloroplast development in tomato plants infected with M. incognita during gall development.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 394
Author(s):  
Reinhard Eder ◽  
Erika Consoli ◽  
Jürgen Krauss ◽  
Paul Dahlin

The devastating root-knot nematode Meloidogyne incognita can cause severe damage to field and greenhouse crops. Due to high economic losses, alternative products are essential to replace banned or strictly regulated nematicides that affect human health and/or the environment. Garlic based products have been previously investigated as environmentally friendly nematicides and their active substances, diallyl polysulfides exist as formulated nematicides on the market. We tested the garlic-based nematicide NEMguard® DE as protective of tomato roots. In vitro evaluation of the lethal concentration (LC) showed strong nematicidal activity with LC50 of 0.8 mg/mL after 96 h and LC90 of 1.5 mg/mL. NEMguard® DE showed protective effect against M. incognita as a single application in small pots and a second application further reduced root galling, significantly. Large greenhouse trials were carried out in two consecutive years to test single and monthly applications of NEMguard® DE. In both years, no controlling effect could be observed on M.incognita. We assume that the silt content of the loamy sandy soil used had an effect on the polysulfides, inhibiting their nematicidal effect. We conclude that further experiments are necessary to investigate the nematicidal potential of NEMguard® DE under different soil compositions or as a different formulation.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Haiyan Fan ◽  
Meiling Yao ◽  
Haiming Wang ◽  
Di Zhao ◽  
Xiaofeng Zhu ◽  
...  

Abstract Background Root-knot nematode is one of the most significant diseases of vegetable crops in the world. Biological control with microbial antagonists has been emerged as a promising and eco-friendly treatment to control pathogens. The aim of this study was to screen and identify novel biocontrol agents against root-knot nematode, Meloidogyne incognita. Results A total of 890 fungal isolates were obtained from rhizosphere soil of different crops and screened by nematicidal activity assays. Snef1910 strain showed high virulence against second stage juveniles (J2s) of M. incognita and identified as Trichoderma citrinoviride by morphology analysis and biomolecular assay. Furthermore, T. citrinoviride Snef1910 significantly inhibited egg hatching with the hatching inhibition percentages of 90.27, 77.50, and 67.06% at 48, 72, and 96 h after the treatment, respectively. The results of pot experiment showed that the metabolites of T. citrinoviride Snef1910 significantly decreased the number of root galls, J2s, and nematode egg masses and J2s population density in soil and significantly promoted the growth of tomato plants. In the field experiment, the biocontrol application showed that the control efficacy of T. citrinoviride Snef1910 against root-knot nematode was more than 50%. Meanwhile, T. citrinoviride Snef1910 increased the tomato plant biomass. Conclusions T. citrinoviride strain Snef1910 could be used as a potential biological control agent against root-knot nematode, M. incognita.


Nematology ◽  
1999 ◽  
Vol 1 (7) ◽  
pp. 735-743 ◽  
Author(s):  
Parwinder S. Grewal ◽  
Edwin E. Lewis ◽  
Sudha Venkatachari

Abstract A possible mechanism of suppression of a plant-parasitic nematode Meloidogyne incognita by entomopathogenic nematodes is described. Heat-killed entomopathogenic nematodes Steinernema feltiae and S. riobrave temporarily suppressed penetration of the root-knot nematode M. incognita into tomato roots, but live nematodes had no effect. Infective juvenile M. incognita were repelled from all entomopathogenic nematode treatments that included their symbiotic bacteria. They were repelled by Galleria mellonella cadavers infected with S. carpocapsae, S. feltiae, and S. riobrave and from cell-free culture filtrates of the symbiotic bacteria Xenorhabdus nematophilus, X. bovienii, and Xenorhabdus sp. "R" from the three nematode species, respectively. Cell-free filtrates from all three Xenorhabdus spp. were toxic to M. incognita infective juveniles causing 98-100% mortality at 15% concentration. Cell-free filtrate of Xenorhabdus sp. "R" also reduced the hatch of M. incognita eggs. Application of formulated bacterial cell-free filtrates temporarily suppressed M. incognita penetration into tomato roots in a greenhouse trial. The short-term effects of cell-free bacterial filtrates, namely toxicity and repellency, were almost entirely due to ammonium. These results demonstrate allelopathic interactions between plant-parasitic nematodes, entomopathogenic nematodes and their symbiotic bacteria. The likely role of allelopathy in the suppression of plant-parasitic nematodes by innundative applications of entomopathogenic nematodes is discussed. Allelopathie: Ein moglicher Mechanismus zur Unterdruckung pflanzenparasitarer Nematoden durch insektenpathogene Nematoden - Es wird ein moglicher Mechanismus zur Unterdruckung des pflanzenparasitaren Nematoden Meloidogyne incognita durch insektenpathogene Nematoden beschrieben. Durch Hitze abgetotete insektenpathogene Nematoden Steinernema feltiae und S. riobrave underdruckten das Eindringen des Wurzelgallenalchens M. incognita in Tomatenwurzeln, lebende Nematoden hatten keine Wirkung. Infektionsjuvenile von M. incognita wurden von allen Behandlungen mit insektenpathogenen Nematoden abgestossen, die auch die symbiontischen Bakterien einschlossen. Sie wurden durch die Kadaver von Galleria mellonella abgestossen, die mit S. carpocapsae, S. feltiae und S. riobrave infiziert waren sowie durch zellfreie Kultursubstrate der symbiontischen Bakterien Xenorhabdus nematophilus, X. bovienii und Xenorhabdus sp. "R" aus den drei genannten Nematodenarten. Zellfreie Kultursubstrate von allen drei Xenorhabdus spp. waren giftig fur die Infektionsjuvenilen von M. incognita und verursachten in einer Konzentration von 15% Abtotungsraten von 98-100%. Zellfreie Kultursubstrate von Xenorhabdus sp. "R" vermiderten ausserdem das Schlupfen von M. incognita-Eiern. In einem Gewachshausversuch unterdruckten formulierte zellfreie Bakterienfiltrate vorubergehend das Eindringen von M. incognita in Tomatenwurzeln. Die Kurzzeitwirkungen von zellfreien Bakterien filtraten, namentlich Giftigkeit und Abstossung, waren nahezu ganz bedingt durch Ammoniak. Diese Ergebnisse zeigen das Vorhandensein von allelopathischen Wechselwirkungen zwischen pflanzenparasitaren Nematoden, insektenpathogenen Nematoden und deren symbiontischen Bakterien. Die wahrscheinliche Rolle von Allelopathie bei der Unterdruckung pflanzenparasitarer Nematoden durch eine Massenanwendung insektenpathogener Nematoden wird diskutiert.


Sign in / Sign up

Export Citation Format

Share Document