Maturation Rate of Tracheid Lengthening in Slow-Grown Young Sugi (Cryptomeria Japonica) Trees

IAWA Journal ◽  
1993 ◽  
Vol 14 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Takafumi Kubo ◽  
Miwako Koyama

Maturation rate, the rate of increase in tracheid length in juvenile wood, was examined in sugi (Cryptomeria japonica D. Don) saplings grown for five years under different shading conditions: 10%, 20% 40% and 100 % of relative illumination intensity. The lowest photointensity dramatically suppressed radial growth and slowed tracheid lengthening. Radial variation of tracheid length within the stem was associated with distance from the pith, rather than the number of annual rings from the pith. Furthermore, maturation rate was closely related to the rate of the radial growth, which changed proportionally with growth rate below a 2-3 mm ring width. A lower maturation rate of tracheid length is associated with a delay in the transition from juvenile to mature wood.

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 589 ◽  
Author(s):  
Cyriac S. Mvolo ◽  
Ahmed Koubaa ◽  
Jean Beaulieu ◽  
Alain Cloutier ◽  
Maurice Defo ◽  
...  

We examined phenotypic relationships among radial growth-related, physical (i.e., related to wood density), and anatomical (i.e., related to tracheid dimensions) wood properties in white spruce (Picea glauca (Moench) Voss), in order to determine the strength and significance of their correlations. Additionally, principal component analysis (PCA) was used to establish if all of the properties must be measured and to determine the key properties that can be used as proxies for the other variables. Radial growth-related and physical properties were measured with an X-ray densitometer, while anatomical properties were measured with a Fiber Quality Analyzer. Fifteen wood properties (tracheid length (TL) and diameter (TD), earlywood tracheid length (ETL) and diameter (ETD), latewood tracheid length (LTL) and diameter (LTD), ring width (RW), ring area (RA), earlywood width (EWW), latewood width (LWW), latewood proportion (LWP), ring density (RD), intra-ring density variation, earlywood density (EWD), and latewood density (LWD)) were assessed. Relationships were evaluated at intra-ring and inter-ring levels in the juvenile wood (JW) and mature wood (MW) zones. Except for a few cases when mature tracheid diameter (TD) was involved, all intra-ring anatomical properties were highly and significantly correlated. Radial growth properties were correlated, with stronger relationships in MW compared to JW. Physical properties were often positively and significantly correlated in both JW and MW. A higher earlywood density coupled with a lower latewood density favored wood uniformity, i.e., the homogeneity of ring density within a growth ring. Managing plantations to suppress trees growth during JW formation, and enhancing radial growth when MW formation starts will favor overall wood quality. In order, RW-EWW-RA, TL-ETL-LTL, and RD-EWD-LWP are the three clusters that appeared in the three wood zones, the whole pith-to-bark radial section, the juvenile wood zone, and the mature wood zone.


1991 ◽  
Vol 21 (2) ◽  
pp. 255-260 ◽  
Author(s):  
Shu-Yin Zhang ◽  
Yuan Zhong

The effect of growth rate on the specific gravity of East-Liaoning oak (Quercusliaotungensis Koidz.) wood was studied and statistically compared with the effect of age (ring number from the pith). Results revealed that age is a decisive factor in controlling the specific gravity of wood, while effect of growth rate on specific gravity is statistically less important. Furthermore, the effect of growth rate varies with ring width range, age, and position within one growth ring (earlywood, latewood, or the whole ring). Within narrower ring widths, specific gravity increases rapidly with increasing growth rate, then more slowly as ring width increases, and when ring width is beyond a specific range, specific gravity remains more or less constant. Growth rate shows little effect on specific gravity of juvenile wood, but with increasing age, the effect increases gradually to reach a significant level in mature wood. Growth rate does not affect specific gravity of latewood significantly, but it shows a greater effect on specific gravity of the whole ring.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Harri Mäkinen ◽  
Tuula Jyske ◽  
Pekka Saranpää

Abstract Variation of tracheid length was studied within individual annual rings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) from the pith to the bark. The material consisted of six Scots pine and six Norway spruce trees growing on sites of both low and high fertility. Microtome sections of 0.25 mm thick were cut from annual rings 7, 20 and 50 counted from the pith outwards, i.e., juvenile, transition and mature wood, respectively. After maceration, tracheid lengths were separately measured in each sample. In juvenile wood of Scots pine, tracheids were on average 17% longer in the latewood than in earlywood. However, in juvenile wood, the first formed earlywood tracheids were slightly longer than those in the middle of the earlywood zone. In the transition and mature wood of Scots pine, the increase in tracheid length was more gradual from earlywood to latewood, and no significant differences were found between earlywood and latewood. In Norway spruce, tracheids were 2–4% longer in the latewood than in earlywood. In general, tracheid length is highly variable within annual rings and the variation can differ from ring-to-ring even within the same tree.


2018 ◽  
Vol 64 (No. 3) ◽  
pp. 101-107
Author(s):  
Foti Dafni ◽  
Passialis Costas ◽  
Voulgaridis Elias ◽  
Skaltsoyiannes Apostolos ◽  
Tsaktsira Maria

Wood density, tracheid length and growth rate were measured in Aleppo pine scions, 21–23 years old, and in Brutia pine rootstocks. In regard to the relationship between cambial age and dry density the results showed that the density increased with cambial age in both scions and rootstocks while the differences between Aleppo pine and Brutia pine were small. The relationship between cambial age and tracheid length showed an increase of tracheid length with cambial age. Differences between scions and rootstocks were small. From the last relationship it can be extracted that juvenile wood is produced in both scions and rootstocks although the Aleppo pine branches which were used for grafting were genetically matured. Between ring width and dry density and between ring width and tracheid length no statistical correlations were found either in scions or in rootstocks. The tracheid length in mature wood was higher than in juvenile wood. An increase of tracheid length with ring width was observed only in the case of juvenile wood.


1994 ◽  
Vol 24 (5) ◽  
pp. 996-1007 ◽  
Author(s):  
K.C. Yang ◽  
G. Hazenberg

Ten 38-year-old trees of Piceamariana (Mill.) B.S.P., grown at each of three spacings (1.8 × 1.8, 2.7 × 2.7, and 3.6 × 3.6 m), at Stanley, 30 km west of Thunder Bay, Ont., were used to study the impact of spacing on growth rate, relative density, and tracheid length of juvenile and mature wood. Increment cores of 12 mm diameter were extracted from the south aspect of each tree at breast height. The boundary of juvenile and mature wood was demarcated by the variation in tracheid length, which varied among trees from ring 11 to 21. Average growth rate, relative density, and tracheid length were obtained between the pith and boundary point (juvenile wood) and beyond the boundary point (mature wood). Differences between the levels of spacing for the three response variables in both juvenile and mature wood were tested using contrasts. Properties of juvenile and mature wood were found to be affected differently by the plantation spacing. Juvenile wood has a faster growth rate and shorter fibres than mature wood. Relative density was similar in both wood zones. The growth rate in juvenile wood was found to be significantly different among the spacing levels. For mature wood, only the growth rate at the 3.6 × 3.6 m spacing was significantly different from the other two spacing levels. The highest relative density, 0.39, in both juvenile and mature wood was found at the 1.8 × 1.8 m spacing. No significant difference in the relative density between the two wider spacings was observed. At the widest spacing, the relative density was 8% lower than that at the 1.8 × 1.8 m spacing. The longest fibre lengths were found at the intermediate 2.7 × 2.7 m spacing, 2.05 mm in juvenile wood and 2.94 mm in mature wood. Tracheid lengths of the 3.6 × 3.6 m spacing were significantly shorter than those of the other two spacings. The relative density and tracheid length of plantation grown wood were lower than those of natural grown wood by at least 5% for relative density and 33% for tracheid length.


2017 ◽  
Vol 47 (8) ◽  
pp. 1056-1065 ◽  
Author(s):  
C. Pollet ◽  
J.-M. Henin ◽  
J. Hébert ◽  
B. Jourez

To quantify the impact of forest management practices and tree growth rate on the potential uses of Douglas-fir wood, nine physico-mechanical properties were studied on more than 1250 standardized clear specimens. These were collected from trees cut in 11 even-aged stands (six trees per stand) located in Wallonia (southern Belgium). Stands were 40 to 69 years old, and mean tree girth was ca. 150 cm. Mean ring width of the 66 trees ranged from 3 to more than 7 mm. Statistical analysis showed significant but weak effects of ring width on the studied properties. Considered jointly, mean ring width and cambial age of the test specimens only explained 28% to 40% of the variability of their properties. Also, when ring width increases, these properties display higher decreases in juvenile wood than in mature wood. From a technological standpoint, maintaining mean ring width under 4 mm in juvenile wood and 6 mm in mature wood should accommodate all potential uses of Douglas-fir wood. However, considering that density appeared to be the main driver of wood properties, our results and the literature corroborate the importance of genetic selection as a complement to silvicultural measures to improve or guarantee the technological properties of Douglas-fir wood.


1986 ◽  
Vol 16 (5) ◽  
pp. 1041-1049 ◽  
Author(s):  
K. C. Yang ◽  
C. A. Benson ◽  
J. K. Wong

The distribution and vertical variation of juvenile wood was studied in an 81-year-old dominant tree and an 83-year-old suppressed tree of Larixlaricina (Du Roi) K. Koch. Two criteria, growth ring width and tracheid length, were used to demarcate the boundary of juvenile wood. The width of juvenile wood, expressed in centimetres and the number of growth rings, decreased noticeably from the base to the top of the tree. The volume of juvenile wood decreased in a similar pattern. These decreasing trends had a strong negative correlation with the year of formation of cambial initials at a given tree level. The length of these cambial initials decreased with increasing age of formation of the cambial initials. In the juvenile wood zone, there was a positive linear regression between the growth ring number (age) and the tracheid length. The slopes of these regression lines at various tree levels increased as the age of the year of formation of the cambial initials increased. At a given tree level, the length of tracheids increased from the pith to a more uniform length near the bark. However, the number of years needed to attain a more uniform tracheid length decreased from the base to the top of the tree. These relationships suggest that the formation of juvenile wood is related to the year of formation of the cambial initials. Consequently, the juvenile wood is conical in shape, tapering towards the tree top.


2002 ◽  
Vol 32 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Barbara L Gartner ◽  
Eric M North ◽  
G R Johnson ◽  
Ryan Singleton

It would be valuable economically to know what are the biological triggers for formation of mature wood (currently of high value) and (or) what maintains production of juvenile wood (currently of low value), to develop silvicultural regimes that control the relative production of the two types of wood. Foresters commonly assume the bole of softwoods produces juvenile wood within the crown and mature wood below. We tested that assumption by comparing growth ring areas and widths and wood density components of the outer three growth rings in disks sampled from different vertical positions of 34-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. The 18 trees were sampled from one site and had a wide range of heights to live crown. Most of the variance (63–93%) in wood characteristics (growth ring area: total, earlywood, latewood; growth ring width: total, earlywood, latewood; latewood proportion: by area, width; and ring density: total, earlywood, latewood) was due to within-tree differences (related to age of the disk). Stepwise regression analysis gave us equations to estimate wood characteristics, after which we analyzed the residuals with a linear model that included whether a disk was within or below the crown (defined as the lowest node on the stem with less than three live branches). After adjusting for tree and disk position, only 2–10% of the residual variation was associated with whether the disk was in or out of the live crown. There were no statistically significant differences at p = 0.05 between a given disk (by node number) in versus out of the crown for any of the factors studied. Moreover, the wood density characteristics were not statistically significant at p = 0.30. This research suggests that there was no effect of the crown position on the transition from juvenile to mature wood as judged by wood density. Therefore, we found no evidence to support the concept that tree spacing and live-branch pruning have a significant effect on the cambial age of transition from juvenile to mature wood in Douglas-fir trees of this age.


IAWA Journal ◽  
1998 ◽  
Vol 19 (1) ◽  
pp. 3-23 ◽  
Author(s):  
Marc Herman ◽  
Pierre Dutilleul ◽  
Tomas Avella-Shaw

Our study was conducted on 40 Norway spruces [Picea abies (L.) Karst.] from a stand located in the Belgian Ardennes. Twenty trees were randomly sampled from a slow-growth category, and twenty others from a fast -growth category. The hypothesis under testing is fourfold: increased tree growth rate may affect 1) the intra-ring weighted frequency distribution of tracheid length, 2) the inter-ring variation (from pith to bark) of the parameters describing this frequency distribution, 3) the interring variation of the mean tracheid length, and 4) the correlation between yearly mean tracheid length and yearly ring width.


2009 ◽  
Vol 39 (10) ◽  
pp. 1971-1978 ◽  
Author(s):  
Miho Kojima ◽  
Fabio Minoru Yamaji ◽  
Hiroyuki Yamamoto ◽  
Masato Yoshida ◽  
Kouichiro Saegusa

The objective of this study was to determine the factor of xylem maturation in Eucalyptus grandis W. Hill ex Maid. planted in four different latitudes and climatic divisions of South America, based on the pattern of the radial distribution of fiber length. In the plantation closest to the equator, the extent of juvenile wood is determined by distance from the pith and is consistent from tree to tree, regardless of growth rate. In contrast, in the plantation farthest from the equator, xylem maturation is controlled by cambial age and varies from tree to tree, depending on growth rate. To produce as much mature wood as early as possible in E. grandis planted closer to the equator, lateral growth should be accelerated from the early growing stage, because the formation of mature wood starts after a certain trunk diameter is reached. Conversely, in plantations far from the equator, it is necessary to first arrest lateral growth at an early growth stage and then accelerate lateral growth after a certain cambium age is reached.


Sign in / Sign up

Export Citation Format

Share Document