Relationships Between Water Availability and Selected Vessel Characteristics in Eucalyptus Grandis and Two Hybrids

IAWA Journal ◽  
1995 ◽  
Vol 16 (3) ◽  
pp. 269-276 ◽  
Author(s):  
Ed C. February ◽  
W.D. Stock ◽  
W.J. Bond ◽  
D.J. Le Roux

The primary objective of this study was to determine the relationships between water availability, plant growth and selected vessel characteristics for Eucalyptus grandis and two hybrids, so as to ascertain whether these xylem characteristics predict water use efficiency. Cuttings of Eucalyptus grandis, E. grandis × camaldulensis and E. grandis × nitens were planted in 220 litre drums from which rainfall was excluded. One half of the individuals received a low watering treatment; one half received a higher watering treatment. Soil moisture depletion through root uptake was monitored weekly and the removed water replaced to maintain 60 and 80 litres in the pots of the low and high watering treatments respectively. Mean values for tangential vessel diameter, vessel frequency and vessel element length were compared for the two treatments. In E. grandis and the hybrid E. grandis × camaldulensis vessel diameter (P < 0.01 ' P < 0.05 respectively) and vessel element length (P < 0.05 for both) increased from the dry to the wet treatment as water uptake through transpiration increased. There is no significant correlation between available water and vessel frequency. For E. grandis × nitens, on the other hand, only vessel frequency was significantly (P < 0.01) correlated with water uptake. In all three species/hybrids water availability also had a significant influence on stem diameter (P < 0.0001) and transverse sectional stem area (P < 0.0001) which increased with increased water consumption. These results suggest that E. grandis × nitens may be more water use efficient than E. grandis, which is commonly grown for timber and thus could potentially be used as a replacement species that is more water conservative in this water limited region.

CERNE ◽  
2010 ◽  
Vol 16 (4) ◽  
pp. 465-472 ◽  
Author(s):  
Israel Luiz de Lima ◽  
Eduardo Luiz Longui ◽  
Luiz Santini Junior ◽  
José Nivaldo Garcia ◽  
Sandra Monteiro Borges Florsheim

The use of fertilization in forest stands results in yield gains, yet little attention has been directed to its potential effects on the quality of wood produced. Information is scarce about the effect of fertilization on anatomical structures of older Eucalyptus wood. This work aims to study the effect of fertilization on tissue cell size of wood from a Eucalyptus grandis stand at age 21 years, the management system of which is based on selective thinning and fertilizer application at the start of the thinning season. Factors to consider include: presence or absence of fertilizers, two log positions and five radial (pith to bark) positions. Results led to the conclusion that fertilization significantly influenced only vessel frequency. Vessel element length was influenced by tree height. Fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter and vessel frequency were influenced by the radial position of the sample in relation to the log. A positive correlation was observed between fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter, ray width and radial position, while a negative correlation was observed between ray frequency and radial position.


IAWA Journal ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 163-186 ◽  
Author(s):  
Bernard J. De Villiers ◽  
Alexei A. Oskolski ◽  
Patricia M. Tilney ◽  
Ben-Erik Van Wyk

The wood structure of two related African genera, Cussonia Thunb. (15 of 21 species) and the monotypic Seemannaralia R.Vig. (Araliaceae) is examined. The considerable diversity in wood anatomical characters within these taxa is mostly related to environmental factors; taxonomic groupings or phylogenetic relationships seem to be less important. The shortening of vessel elements and fibres, an increase in vessel number per group, a decrease in vessel diameter and a reduction in the number of bars of perforation plates, are associated with the more temperat species. The changes in vessel grouping show a significant correlation with rainfall. The placement of the simple-leaved Cussonia species in the subgenus Protocussonia and the isolated position of C. paniculata Eckl. & Zeyh., the only member of the subgenus Paniculatae, are supported. Many Cussonia species share a very low fibre to vessel element length ratio. Despite the basal position of Seemannaralia relative to Cussonia revealed by molecular data (Plunkett et al. 2004), its wood structure is more specialised in terms of the Baileyan major trends in wood evolution. This discrepancy may be the effect of a long-term adaptation of tropical ancestors of Seemannaralia to drier biomes.


IAWA Journal ◽  
1994 ◽  
Vol 15 (4) ◽  
pp. 361-376 ◽  
Author(s):  
Helga Lindorf

In 19 species of a very dry forest in Venezuela vessel diameter, vessel frequency, vessel grouping, vessel element length, and intervessel pit size, were studied and compared with data from other habitats. A predominance of characters that presumably contribute to hydraulic safety was observed: numerous grouped vessels of small diameter, short vessel elements, and minute intervessel pits. In some species, a xeromorphic wood anatomy coexists together with adaptations such as deciduousness, xeromorphic foliage, deep or superficially-extended roots, and succulence. In other species studied, the presence of xerophytic adaptations such as assimilating stems, succulence, and deep roots, seem to mitigate the xeromorphic wood appearance and, to some extent, lend it a mesomorphic character.


IAWA Journal ◽  
2011 ◽  
Vol 32 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Marina Milanello do Amaral ◽  
Gregorio Ceccantini

Pilostyles species (Apodanthaceae) are endoparasites in stems of the plant family Fabaceae. The body comprises masses of parenchyma in the host bark and cortex, with sinkers, comprising groups of twisted tracheal elements surrounded by parenchyma that enter the secondary xylem of the host plant. Here we report for the first time the effects of Pilostyles parasitism on host secondary xylem. We obtained healthy and parasitized stems from Mimosa foliolosa, M. maguirei and M. setosa and compared vessel element length, fiber length, vessel diameter and vessel frequency, measured through digital imaging. Also, tree height and girth were compared between healthy and parasitized M. setosa. When parasitized, plant size, vessel diameter, vessel element length and fiber length are all less than in healthy plants. Also, vessel frequency is greater and vessels are narrower in parasitized stems. These responses to parasitism are similar to those observed in stressed plants. Thus, hosts respond to the parasite by changing its wood micromorphology in favour of increased hydraulic safety.


IAWA Journal ◽  
2011 ◽  
Vol 32 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Rocío A. Bernal ◽  
Vera Coradin ◽  
José Camargos ◽  
Cecília Costa ◽  
José Pissarra

Woods from an important group of Lecythidaceae species called “tauari” can hardly be identified in the field by their gross and general features. In this study we show that, when properly delimited to the genera Allantoma, Cariniana and Couratari, wood anatomical characteristics can be used to identify the species known as “tauari”, even though it is not possible to separate all species. In addition to anatomical characters, wood colour is an important character to help distinguish species of Cariniana and Allantoma from species of Couratari. Detailed wood anatomical descriptions from “tauari” woods Allantoma, Cariniana and Couratari are given and a table with diagnostic differences is presented. Common characters of this group are axial parenchyma in narrow continuous bands, prismatic crystals in chambered axial parenchyma cells and silica bodies in ray cells. Microscopic features that help in species identification are: fibre pitting (minutely or distinctly bordered), traumatic intercellular canals, average vessel diameter, vessel element length, axial parenchyma strand length, and ray height and width.


Fact Sheet ◽  
2008 ◽  
Author(s):  
Robert M. Hirsch ◽  
Pixie A. Hamilton ◽  
Timothy L. Miller ◽  
Donna N. Myers
Keyword(s):  

IAWA Journal ◽  
2000 ◽  
Vol 21 (3) ◽  
pp. 277-292 ◽  
Author(s):  
D.W. Woodcock ◽  
G. Dos Santos ◽  
C. Reynel

The Tambopata region of the southern Peruvian Amazon supports a high diversity of both woody plants and forest types. Woods collected from low riverside vegetation, floodplain forest, clay-soil forest on an upper terrace, sandy-soil forest, and swamp forest provide an opportunity to test for significant differences in quantitative anatomical characters among forest types. Vessel-element length in floodplain-forest trees is significantly greater than in the other forest types. Specific gravity is lower in the two early-successional associations (low riverine forest and mature floodplain forest). Vessel diameter and density do not show significant differences among forest types and may be responding to overall climate controls. These two characters, however, show a pattern of variation within a transect extending back from the river along a gradient of increasing substrate and forest age; in addition, sites characterized by frequent flooding or presence of standing water lack vessels in the wider-diameter classes. The six characters analyzed show distributions that are, with the exception of wood specific gravity, significantly nonnormally distributed, a consideration that may be important in representing characteristics of assemblages of taxa. The degree of variability seen in some of the quantitative characters shows the importance of either basing analysis on adequate sample sizes or identifying robust indicators that can be used with small samples.


2018 ◽  
Vol 22 (5) ◽  
pp. 2795-2809 ◽  
Author(s):  
Hafsa Ahmed Munia ◽  
Joseph H. A. Guillaume ◽  
Naho Mirumachi ◽  
Yoshihide Wada ◽  
Matti Kummu

Abstract. Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42 % of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status – i.e. they are not yet dependent on upstream water to avoid stress – but could still impact on the intensity of the stress. At the same time, 386 million people (14 %) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11 %) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning of management practices in transboundary basins.


2011 ◽  
Vol 15 (12) ◽  
pp. 3785-3808 ◽  
Author(s):  
Y. Wada ◽  
L. P. H. van Beek ◽  
M. F. P. Bierkens

Abstract. During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960–2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr−1 (gross/net) over the period 1960–2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies (e.g. India, Turkey, Romania and Cuba) some of past extreme events were anthropogenically driven due to increased water demand rather than being climate-induced.


Sign in / Sign up

Export Citation Format

Share Document