A new synonym of Rohdea annulata (Asparagaceae) and the first report of its wild distribution in China

Phytotaxa ◽  
2019 ◽  
Vol 411 (2) ◽  
pp. 116-118
Author(s):  
GUANG-WAN HU

Tupistra annulata H.Li & J.L.Huang in Huang & Li (1990: 51) was described based on the materials from cultivated plants in Kunming Botanical Garden, and its precise wild collecting locality was unknown. Its perianth with a ringed, fleshy, smooth, cushion like appendage in throat makes it distinctly different from other species in the genus. Tamura et al. (2000) separated Campylandra Baker (1875: 582) from Tupistra Ker Gawler (1814: 1655) and transferred this species into Campylandra as C. annulata (H.Li & J.L.Huang) Tamura et al. (2000: 159). Later, Tanaka (2003) transferred some species of Campylandra, Tupistra and Gonioscypha Baker (1875: 581) into Rohdea Roth (1821: 196) based on morphological analysis but not including Campylandra annulata. Supported by the evidence from parsimony analysis of trnK and rbcL sequences and karyotype data, Yamashita & Tamura (2004) merged the whole genus Campylandra in Rohdea. Therefore this species was combined as R. annulata (H.Li & J.L.Huang) Yamashita & Tamura (2004: 369).

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 698-698 ◽  
Author(s):  
Y. Tomitaka ◽  
T. Usugi ◽  
R. Kozuka ◽  
S. Tsuda

In 2009, some commercially grown tomato (Solanum lycopersicum) plants in Chiba Prefecture, Japan, exhibited mosaic symptoms. Ten plants from a total of about 72,000 cultivated plants in the greenhouses showed such symptoms. To identify the causal agent, sap from leaves of the diseased plants was inoculated into Chenopodium quinoa and Nicotiana benthamiana plants. Local necrotic lesions appeared on inoculated leaves of C. quinoa, but no systemic infection was observed. Systemic mosaic symptoms were observed on the N. benthamiana plants inoculated. Single local lesion isolation was performed three times using C. quinoa to obtain a reference isolate for further characterization. N. benthamiana was used for propagation of the isolate. Sap from infected leaves of N. benthamiana was mechanically inoculated into three individual S. lycopersicum cv. Momotaro. Symptoms appearing on inoculated tomatoes were indistinguishable from those of diseased tomato plants found initially in the greenhouse. Flexuous, filamentous particles, ~750 nm long, were observed by electron microscopy in the sap of the tomato plants inoculated with the isolate, indicating that the infecting virus may belong to the family Potyviridae. To determine genomic sequence of the virus, RT-PCR was performed. Total RNA was extracted from the tomato leaves experimentally infected with the isolate using an RNeasy Plant Mini kit (QIAGEN, Hilden, Germany). RT-PCR was performed by using a set of universal, degenerate primers for Potyviruses as previously reported (2). Amplicons (~1,500 bp) generated by RT-PCR were extracted from the gels using the QIAquick Gel Extraction kit (QIAGEN) and cloned into pCR-BluntII TOPO (Invitrogen, San Diego, CA). DNA sequences of three individual clones were determined using a combination of plasmid and virus-specific primers, showing that identity among three clones was 99.8%. A consensus nucleotide sequence of the isolate was deposited in GenBank (AB823816). BLASTn analysis of the nucleotide sequence determined showed 99% identity with a partial sequence in the NIb/coat protein (CP) region of Colombian datura virus (CDV) tobacco isolate (JQ801448). Comparison of the amino acid sequence predicted for the CP with previously reported sequences for CDV (AY621656, AJ237923, EU571230, AM113759, AM113754, and AM113761) showed 97 to 100% identity range. Subsequently, CDV infection in both the original and experimentally inoculated plants was confirmed by RT-PCR using CDV-specific primers (CDVv and CDVvc; [1]), and, hence, the causal agent of the tomato disease observed in greenhouse tomatoes was proved to be CDV. The first case of CDV on tomato was reported in Netherlands (3), indicating that CDV was transmitted by aphids from CDV-infected Brugmansia plants cultivated in the same greenhouse. We carefully investigated whether Brugmansia plants naturally grew around the greenhouses, but we could not find them inside or in proximity to the greenhouses. Therefore, sources of CDV inoculum in Japan are still unclear. This is the first report of a mosaic disease caused by CDV on commercially cultivated S. lycopersicum in Japan. References: (1) D. O. Chellemi et al. Plant Dis. 95:755, 2011. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) J. Th. J. Verhoeven et al. Eur. J. Plant. Pathol. 102:895, 1996.


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 593-593 ◽  
Author(s):  
M. R. Williamson ◽  
J. H. Blake ◽  
S. N. Jeffers ◽  
S. A. Lewis

In September 1999, royal ferns (Osmunda regalis L.) at a South Carolina wholesale nursery were found to be infected by foliar nematodes. Lesions were brown, vein-limited, and often fan shaped. As severity increased, affected leaflets became totally necrotic. Nematodes were extracted by excising and dicing symptomatic leaf sections and placing them in water for up to 24 h. Ten adult nematodes from each of two fern plants were examined microscopically and determined to be Aphelenchoides fragariae (Ritzema Bos) Christie. This is the first report of this nematode infecting royal fern. In August 1996, leaves from several cultivars of Hosta spp. with yellow to tan, vein-limited lesions were submitted from The South Carolina Botanical Garden (Clemson, SC) to the Clemson University Plant Problem Clinic for diagnosis. Nematodes were extracted and examined as described above and identified as A. fragariae. This is the first report of this nematode infecting Hosta spp. in South Carolina. Since 1996, foliar nematodes have been recovered from hostas at several wholesale nurseries in South Carolina. Aphelenchoides spp. also have been detected previously in commercially produced ornamental plants in South Carolina, including a Begonia sp. in 1988; Polygonum bistorta L. ‘Super-bum’ (snakeweed) in 1997; and a Polystichum sp. (holly fern) in 1997. All plants exhibited angular or vein-limited, necrotic lesions typical of foliar nematode infections.


Plant Disease ◽  
2021 ◽  
Author(s):  
Samara A. Oliveira ◽  
Daniel M. Dlugos ◽  
Paula Agudelo ◽  
Steven N. Jeffers

Root-knot nematodes (RKNs), Meloidogyne spp., are some of the most economically important pathogens of cultivated plants. Meloidogyne javanica is one of the most destructive RKN species and is well known for its broad host range and the severe damage it causes to plant roots (Perry et al. 2009). In Feb 2018, four mature dead and dying hybrid lavender plants (Lavandula ×intermedia ‘Phenomenal’) were collected in Edgefield County, South Carolina, and suspected of having Phytophthora root and crown rot (Dlugos and Jeffers 2018). Greenhouse-grown plants had been transplanted in Dec 2016 and Jan 2017 into a sandy loam soil on a site that had been fallow or in pasture for over 30 years. Some plants began to turn gray and die in summer 2017, and approximately 40% of 1230 plants were symptomatic or dead by Feb 2018. Phytophthora spp. were not isolated from the collected plants but were isolated from plants collected on subsequent visits. Instead, all four plants had small, smooth galls on the roots. Lavender roots were examined microscopically (30-70×), and egg masses of RKNs were observed on the galls. Mature, sedentary RKN females were handpicked from galled roots, and perineal patterns of 10 specimens were examined and identified as M. javanica. Juveniles and eggs were extracted from lavender roots by the method of Coolen and D’herde (1972). To confirm species identification, DNA was extracted from 10 individual juveniles, and a PCR assay was conducted using species-specific primers for M. javanica, Fjav/Rjav (Zijlstra et al. 2000). A single amplicon was produced with the expected size of approximately 720 bp, which confirmed identity as M. javanica. To determine pathogenicity, M. javanica from lavender roots were inoculated onto susceptible tomato plants for multiplication, and severe gall symptoms occurred on tomato roots 60 days later. Nematodes were extracted from tomato roots and inoculated onto healthy, rooted cuttings of ‘Phenomenal’ lavender plants growing in pots of soilless medium in a greenhouse. Plants were inoculated with 0, 1000, 2000, 5000, or 10000 eggs and juveniles of M. javanica. Five single-plant replicates were used for each treatment, and plants were randomized on a greenhouse bench. Plants were assessed 60 days after inoculation, and nematodes were extracted from roots and counted. The reproduction factor was 0, 43.8, 40.9, 9.1, 7.7, and 2.6 for initial nematode populations 0, 1000, 2000, 5000, and 10000, respectively, which confirmed pathogenicity (Hussey and Janssen 2002). Meloidogyne javanica also was recovered in Mar 2018 from galled roots on a ‘Munstead’ (L. angustifolia) lavender plant from Kentucky (provided by the Univ. of Kentucky Plant Disease Diagnostic Laboratories), and an unidentified species of Meloidogyne was isolated in Aug 2020 from a ‘Phenomenal’ plant grown in Florida. COI mtDNA sequences from the SC (MZ542457) and KY (MZ542458) populations were submitted to Genbank. M. javanica previously was found associated with field-grown lavender (hybrid and L. angustifolia) in Brazil, but pathogenicity was not studied (Pauletti and Echeverrigaray 2002). To our knowledge, this is the first report of M. javanica pathogenic to L. ×intermedia in the USA, and the first time RKNs have been proven to be pathogenic to Lavandula spp. following Koch’s Postulates. Further studies are needed to investigate the geographic distribution of M. javanica on lavender and the potential threat this nematode poses to lavender production in the USA.


Author(s):  
N.A. Pavluk ◽  
◽  
L.M. Pshennikova ◽  

White rot of staghorn sumac (Rhus typhina f. laciniata) wood in the collection of Botanical Garden-Institute FEB RAS caused by Schizophyllum commune is discussed.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 147-147
Author(s):  
J. H. Park ◽  
S. E. Cho ◽  
K. S. Han ◽  
H. D. Shin

Garlic chives, Allium tuberosum Roth., are widely cultivated in Asia and are the fourth most important Allium crop in Korea. In June 2011, a leaf blight of garlic chives associated with a Septoria spp. was observed on an organic farm in Hongcheon County, Korea. Similar symptoms were also found in fields within Samcheok City and Yangku County of Korea during the 2011 and 2012 seasons. Disease incidence (percentage of plants affected) was 5 to 10% in organic farms surveyed. Diseased voucher specimens (n = 5) were deposited at the Korea University Herbarium (KUS). The disease first appeared as yellowish specks on leaves, expanding to cause a leaf tip dieback. Half of the leaves may be diseased within a week, especially during wet weather. Pycnidia were directly observed in leaf lesions. Pycnidia were amphigenous, but mostly epigenous, scattered, dark brown to rusty brown, globose, embedded in host tissue or partly erumpent, separate, unilocular, 50 to 150 μm in diameter, with ostioles of 20 to 40 μm in diameter. Conidia were acicular, straight to sub-straight, truncate at the base, obtuse at the apex, hyaline, aguttulate, 22 to 44 × 1.8 to 3 μm, mostly 3-septate, occasionally 1- or 2-septate. These morphological characteristics matched those of Septoria allii Moesz, which is differentiated from S. alliacea on conidial dimensions (50 to 60 μm long) (1,2). A monoconidial isolate was cultured on potato dextrose agar (PDA). Two isolates have been deposited in the Korean Agricultural Culture Collection (Accession Nos. KACC46119 and 46688). Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 482-bp was deposited in GenBank (JX531648 and JX531649). ITS sequence information was at least 99% similar to those of many Septoria species, however no information was available for S. allii. Pathogenicity was tested by spraying leaves of three potted young plants with a conidial suspension (2 × 105 conidia/ml), which was harvested from a 4-week-old culture on PDA. Control leaves were sprayed with sterile water. The plants were placed in humid chambers (relative humidity 100%) for the first 48 h. After 7 days, typical leaf blight symptoms started to develop on the leaves of inoculated plants. S. allii was reisolated from the lesions of inoculated plants, confirming Koch's postulates. No symptoms were observed on control plants. The host-parasite association of A. tuberosum and S. allii has been known only from China (1). S. alliacea has been recorded on several species of Allium, e.g. A. cepa, A. chinense, A. fistulosum, and A. tuberosum from Japan (4) and A. cepa from Korea (3). To the best of our knowledge, this is the first report of S. allii on garlic chives. No diseased plants were observed in commercial fields of garlic chives which involved regular application of fungicides. The disease therefore seems to be limited to organic garlic chive production. References: (1) P. K. Chi et al. Fungous Diseases on Cultivated Plants of Jilin Province, Science Press, Beijing, China, 1966. (2) P. A. Saccardo. Sylloge Fungorum Omnium Hucusque Congnitorum. XXV. Berlin, 1931. (3) The Korean Society of Plant Pathology. List of Plant Diseases in Korea, Suwon, Korea, 2009. (4) The Phytopathological Society of Japan. Common Names of Plant Diseases in Japan, Tokyo, Japan, 2000.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1376-1376 ◽  
Author(s):  
M. J. Park ◽  
S. E. Cho ◽  
M. Piątek ◽  
H. D. Shin

Macleaya microcarpa (Maxim.) Fedde, also known as smallfruit plume poppy, is a perennial herb belonging to the family Papaveraceae. The plant, together with the better-known species M. cordata (Willd.) R. Br., is native to central China and is now planted worldwide for medicinal purposes. In October 2008 and August 2009, dozens of smallfruit plume poppy planted in the Kraków Botanical Garden, Poland, were found to be severely infected with a powdery mildew. White colonies with abundant sporulation developed on both sides of leaves and young stems, forming circular to irregular patches. Infections caused leaf yellowing and premature defoliation. The damage has been observed every year since 2009. Representative voucher specimens were deposited in the fungal herbarium of the W. Szafer Institute of Botany of the Polish Academy of Sciences (KRAM) and the Korea University herbarium (KUS). Appressoria on the mycelia were lobed, often in pairs. Conidiophores composed of three to four cells arose from the upper part of creeping hyphae, 65 to 120 × 7 to 10 μm, attenuated toward the base, sub-straight or slightly flexuous in foot-cells, and produced conidia singly. Conidia were hyaline, oblong-elliptical to doliiform, 25 to 38 × 12 to 18 μm with a length/width ratio of 1.8 to 2.6; lacked fibrosin bodies; and produced germ tubes on the subterminal position with club-shaped or lobed appressoria. The conidial surface was wrinkled to irregularly reticulate. No chasmothecia were found. The structures described above match well with the anamorph of Erysiphe macleayae R.Y. Zheng & G.Q. Chen (3). To confirm the identity of the causal fungus, the internal transcribed spacer (ITS) region of rDNA from KUS-F24459 was amplified using primers ITS5 and P3 (4) and directly sequenced. The resulting sequence of 553 bp was deposited in GenBank (Accession No. JQ681217). A GenBank BLAST search using the present data revealed >99% sequence similarity of the isolate with E. macleayae on M. cordata from Japan (AB016048). Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of three healthy potted plants. Three noninoculated plants served as controls. Plants were maintained in a greenhouse at 25°C. Inoculated plants developed signs and symptoms after 7 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was morphologically identical to that originally observed on diseased plants. The powdery mildew infections of M. cordata associated with E. macleayae have been recorded in China and Japan (2), and more recently in Germany (1,3). To our knowledge, this is the first report of E. macleayae on M. microcarpa globally as well as in Poland. This mildew species was described in China and is endemic to Asia, where chasmothecia of the fungus were found. Only recently have powdery mildews been found on M. cordata in Germany (1,3) and now on M. microcarpa in Poland, indicating the fungus is spreading in Europe. References: (1) N. Ale-Agha et al. Schlechtendalia 17:39, 2008. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , February 7, 2012. (3) A. Schmidt and M. Scholler. Mycotaxon 115:287, 2011. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2021 ◽  
Author(s):  
Haixia Ding ◽  
Wan Peng Dong ◽  
Wei Di Mo ◽  
Lijuan Peng ◽  
Zuo-Yi Liu

Chinese rose (Rosa chinensis Jacq.) is cultivated for edible flowers in southwestern China (Zhang et al. 2014). In March 2020, a leaf spot disease was observed on about 3-5% leaves of Chinese rose cultivar ‘Mohong’ in Guizhou Botanical Garden (26°37' 45'' N, 106°43' 10'' E), Guiyang, Guizhou province, China. The symptomatic plants displayed circular, dark brown lesions with black conidiomata in grey centers on leaves, and leaf samples were collected. After surface sterilization (0.5 min in 75% ethanol and 2 min in 3% NaOCl, washed 3 times with sterilized distilled water) (Fang 2007), small pieces of symptomatic leaf tissue (0.3 × 0.3 cm) were plated on potato dextrose agar (PDA) and incubated at 28oC for about 7 days. Two single-spore isolates, GZUMH01 and GZUMH02, were obtained, which were identical in morphology and molecular analysis. Therefore, the representative isolate GZUMH01 was used for further study. The pathogenicity of GZUMH01 was tested through a pot assay. Ten healthy plants were scratched with a sterilized needle on the leaves. Plants were inoculated by spraying a spore suspension (106 spores ml-1) onto leaves until runoff, and the control leaves sprayed with sterile water. The plants were maintained at 25°C with high relative humidity (90 to 95%) in a growth chamber. The pathogenicity test was carried out three times using the method described in Fang (2007). The symptoms developed on all inoculated leaves but not on the control leaves. The lesions were first visible 48 h after inoculation, and typical lesions similar to those observed on field plants after 7 days. The same fungus was re-isolated from the infected leaves but not from the non-inoculated leaves, fulfilling Koch’s postulates. Fungal colonies on PDA were villiform and greyish. The conidia were abundant, oval-ellipsoid, aseptate, 15.8 (13.7 to 18.8) × 5.7 (4.3 to 6.8) µm. The fungal colonies, hyphae, and conidia were consistent with the descriptions of Colletotrichum boninense Moriwaki, Toy. Sato & Tsukib. (Damm et al. 2012; Moriwaki et al. 2003). The pathogen was confirmed to be C. boninense by amplification and sequencing of the internal transcribed spacer region (ITS), the glyceraldehyde-3-phosphate dehydrogenase (GADPH), actin (ACT), and chitin synthase 1 (CHS-1) genes using primers ITS1/ITS4, GDF1/GDR1, ACT512F/ACT783R, and CHS-79F/CHS-345R, respectively (Damm et al. 2012; Moriwaki et al. 2003). The sequences of the PCR products were deposited in GenBank with accession numbers MT845879 (ITS), MT861006 (GADPH), MT861007 (ACT), and MT861008 (CHS-1). BLAST searches of the obtained sequences of the ITS, GADPH, ACT, and CHS-1 genes revealed 100% (554/554 nucleotides), 100% (245/245 nucleotides), 97.43% (265/272 nucleotides), and 99.64% (279/280 nucleotides) homology with those of C. boninense in GenBank (JQ005160, JQ005247, JQ005508, and JQ005334, respectively). Phylogenetic analysis (MEGA 6.0) using the maximum likelihood method placed the isolate GZUMH01 in a well-supported cluster with C. boninense. The pathogen was thus identified as C. boninense based on its morphological and molecular characteristics. To our knowledge, this is the first report of the anthracnose disease on R. chinensis caused by C. boninense in the world.


Plant Disease ◽  
2000 ◽  
Vol 84 (7) ◽  
pp. 808-808 ◽  
Author(s):  
R. Mathiasen ◽  
C. Parks ◽  
J. Beatty ◽  
S. Sesnie

The mistletoe Psittacanthus angustifolius Kuijt (Loranthaceae) is a common parasite of pines in Honduras (2). In March we observed this mistletoe parasitizing a pine that Farjon and Styles (1) have classified as Pinus tecunumanii Eguiluz & J. P. Perry 4 km south of Jitotol, Chiapas, Mexico. The taxonomy of this host in Chiapas is controversial as Perry (3) classifies the Chiapas populations of this pine as Pinus oocarpa var. ochoterenai Martinez. We also observed P. angustifolius on P. oocarpa Schiede 4 km north of Jitotol. In addition, we found this mistletoe parasitizing Pinus maximinoi H. E. Moore approximately 15 km west of Ocosingo, Chiapas. In Guatemala, we observed P. angustifolius on P. oocarpa at several locations north and south of La Cumbre, Department Baja Verapaz. This mistletoe appears to be less common in Chiapas and Guatemala than it is in Honduras. We did not observe this mistletoe damaging its pine hosts in Mexico or Guatemala. This is the first report of P. angustifolius in both Mexico and Guatemala and the first report of this mistletoe on Pinus tecunumanii (or Pinus oocarpa var. ochoterenai). Specimens of P. angustifolius from the above pine hosts have been deposited at the Deaver Herbarium, Northern Arizona University, Flagstaff. References: (1) A. Farjon and B. Styles. Pinus (Pinaceae), Flora Neotropica, Monogr. 75, New York Botanical Garden, 1997. (2) Mathiasen et al. Plant Dis. 84:203, 2000. (3) J. Perry. The Pines of Mexico and Central America, Timber Press, Portland, Oregon, 1991


Plant Disease ◽  
2001 ◽  
Vol 85 (8) ◽  
pp. 922-922 ◽  
Author(s):  
Vladimir Vujanovic ◽  
Marc St-Arnaud

To our knowledge, this is the first report of Cryptocline taxicola (Allesch.) Petrak (Coelomycetes) on Pacific yew (Taxus brevifolia Nuttall) and the first observation of the fungus infecting living needles. C. taxicola is known to occur on needles of Taxus baccata in Europe (on T. baccata var. fastigiata) and North America (Vermont) (on T. baccata var. canadensis) (2). In August 1999 and 2000, chlorotic and necrotic current and second-year needles of Pacific yew were observed to have fruiting bodies, sometimes greater than 400 per needle, on the upper surface. Acervuli were circular to subcircular, yellowish, surrounded by brown circles, subcuticular to intraepidermal, at first covered, later exposed by the fissure of the cuticule, and 150 to 350 μm wide. Hyphae in host tissue were septate, brownish, and 3 to 4.5 μm in diameter. Conidiophores were phialidic, cylindrical, hyaline, 10 to 20 × 2.5 to 4.5 μm. Mature conidia were ellipsoidal to oval, truncate at the base, obtuse at the apex, hyaline to slightly pigmented, 8 to 17 × 4 to 5 μm. From these symptomatic needles, C. taxicola was often isolated (>85%) on potato dextrose agar. Koch's postulates were completed for C. taxicola by spraying current-year living needles, on one twig of each of separate plants (five) of T. brevifolia with a conidial suspension of 4 × 103 conidia per ml. Five control twigs were sprayed with sterile, distilled water. Twigs were covered with black sterile plastic bags and incubated outdoors for 24 h, when the bags were removed. Within 3 weeks, inoculated needles exhibited chlorotic and necrotic symptoms similar to those originally observed, but symptoms were never observed on control twigs. The fungus was reisolated (91%) only from the symptomatic needles. T. brevifolia trees growing in the Montreal Botanical Garden (Quebec, Canada) are clones originating from the Pacific Coast of the United States. We found that Pacific yew was colonized more frequently on the dry rock outcrops in the Alpine and Chinese Garden tree plantations. We believe that inappropriate stand selection, unfavorable humid conditions, and a thin organic soil layer may predispose Pacific yew to infection by this fungal species. A similar effect has been reported in Europe (1) for Cryptocline pseudotsugae causing serious levels of disease in a Pseudotsuga menziesii plantations. References: (1) T. L. Cech. Forstschutz Aktuell. 25:13, 2000. (2) G. Morgan-Jones. Can. J. Bot. 51:309, 1973.


Sign in / Sign up

Export Citation Format

Share Document