Cu–Co Co-Doped Microporous Coating on Titanium with Osteogenic and Antibacterial Properties

2021 ◽  
Vol 17 (7) ◽  
pp. 1435-1447
Author(s):  
Quan-Ming Zhao ◽  
Bo Li ◽  
Fu-Xun Yu ◽  
Yan-Kun Li ◽  
Jie-Shi Wu ◽  
...  

Titanium (Ti) and its alloys are widely used in bone surgery by virtue of their excellent mechanical properties and good biocompatibility; however, complications such as loosening and sinking have been reported post-implantation. Herein we deposited a copper–cobalt (Cu–Co) co-doped titanium dioxide (TUO) coating on the surface of Ti implants by microarc oxidation. The osteogenic and antimicrobial properties of the coating were evaluated by in vitro experiments, and we also assessed β-catenin expression levels on different sample surfaces. Our results revealed that the coating promoted the adhesion, proliferation, and differentiation of MG63 osteoblasts, and TUO coating promoted β-catenin expression; moreover, the proliferation of Staphylococcus aureus was inhibited. To summarize, we report that Cu–Co co-doping can enhance the osteogenic and antibacterial activities of orthopedic Ti implants, leading to potentially improved clinical performance.

Author(s):  
Jayanta Sarma ◽  
Gurvinder Singh ◽  
Mukta Gupta ◽  
Reena Gupta ◽  
Bhupinder Kapoor

Objective: The synthesis of novel benzimidazole-hydrazone derivatives has been carried out based on the previous findings that both these pharmacophores possess potent antimicrobial activities. The antibacterial properties of synthesized derivatives were screened against both Gram-positive and Gram-negative bacteria.Methods: O-phenylenediamine on condensation with substituted aromatic acids in polyphosphoric acid gave benzimidazole nucleus which on reaction with ethyl chloroacetate and hydrazine hydrate in two different steps resulted in the formation of substituted acetohydrazides. The targeted compounds 6a-l were synthesized by reaction of substituted acetohydrazides with aromatic aldehydes and screened for their antibacterial potential by cup-plate method.Results: The synthesized benzimidazole-hydrazones exhibited moderate to strong antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The compounds 6a-6f were found to be most effective against S. aureus, E. coli, and P. aeruginosa. Among all the synthesized compounds, the zone of inhibition of 6f in highest concentration, i.e., 100 μg/ml were found to be >31 mm against all the stains of bacteria.Conclusion: The antibacterial results revealed that the synthetized derivatives have significant antimicrobial properties and further structure activity relationship studies may develop more potent and less toxic molecules.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jungang Li ◽  
Chaoqian Zhao ◽  
Chun Liu ◽  
Zhenyu Wang ◽  
Zeming Ling ◽  
...  

Abstract Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair.


2021 ◽  
Vol 9 (2) ◽  
pp. 450
Author(s):  
Maigualida Cuenca ◽  
María Carmen Sánchez ◽  
Pedro Diz ◽  
Lucía Martínez-Lamas ◽  
Maximiliano Álvarez ◽  
...  

The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for 24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed, and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov. during biofilm development did not affect the structure of the community, but an anti-biofilm effect against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal pathogens, were demonstrated in an in vitro biofilm model.


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


RSC Advances ◽  
2016 ◽  
Vol 6 (51) ◽  
pp. 45840-45849 ◽  
Author(s):  
Tian Tian ◽  
Chengtie Wu ◽  
Jiang Chang

Cuprorivaite firstly synthesized by sol–gel method with angiogenic and antibacterial activities for wound healing application.


2020 ◽  
Vol 9 (3) ◽  
pp. 855 ◽  
Author(s):  
Maria Antonia Llopis-Grimalt ◽  
Aina Arbós ◽  
Maria Gil-Mir ◽  
Aleksandra Mosur ◽  
Prathamesh Kulkarni ◽  
...  

(1) One strategy to improve the outcome of orthopedic implants is to use porous implants with the addition of a coating with an antibacterial biomolecule. In this study, we aimed to produce and test the biocompatibility, the osteopromotive (both under normal conditions and under a bacterial challenge with lipopolysaccharide (LPS)) and antibacterial activities of a porous Ti-6Al-4V implant coated with the flavonoid quercitrin in vitro. (2) Porous Ti-6Al-4V implants were produced by 3D printing and further functionalized with quercitrin by wet chemistry. Implants were characterized in terms of porosity and mechanical testing, and the coating with quercitrin by fluorescence staining. Implant biocompatibility and bioactivity was tested using MC3T3-E1 preosteoblasts by analyzing cytotoxicity, cell adhesion, osteocalcin production, and alkaline phosphatase (ALP) activity under control and under bacterial challenging conditions using lipopolysaccharide (LPS). Finally, the antibacterial properties of the implants were studied using Staphylococcus epidermidis by measuring bacterial viability and adhesion. (3) Porous implants showed pore size of about 500 µm and a porosity of 52%. The coating was homogeneous over all the 3D surface and did not alter the mechanical properties of the Young modulus. Quercitrin-coated implants showed higher biocompatibility, cell adhesion, and osteocalcin production compared with control implants. Moreover, higher ALP activity was observed for the quercitrin group under both normal and bacterial challenging conditions. Finally, S. epidermidis live/dead ratio and adhesion after 4 h of incubation was lower on quercitrin implants compared with the control. (4) Quercitrin-functionalized porous Ti-6Al-4V implants present a great potential as an orthopedic porous implant that decreases bacterial adhesion and viability while promoting bone cell growth and differentiation.


2019 ◽  
Author(s):  
Maria Cheraghi ◽  
Fatemeh Babadi

Abstract Recently, natural products have been evaluated as a source of antimicrobial agent with efficacies against a variety of microorganisms. The antibacterial activities of the oak fruit,inner husk of oak fruit (Jaft), and Jaftex mouthwash have been studiedin several studies. Thisstudy aimedto review the studies ofthe effects of antibacterial properties of the oak fruit, oak fruit hull (Jaft), and Jaftex mouthwash. Materials and Methods In this review study, relevant articles related to the antimicrobial activity of the oak fruit, inner husk of oak fruit (Jaft), and 'Jaftex mouthwash' were searched from the current digital literature using electronic databases namely, SID, ScienceDirect, PubMed, Google Scholar, Magiran, Web of Science employing the same keywords from 1990 to 2019. Results Oakfruit, inner husk of oak fruit (Jaft), and Jaftex mouthwash have antimicrobial properties against many microorganisms. Discussion and Conclusion Antibacterial properties of oak fruit, inner husk ofoak fruit (Jaft) can be used to reverse the antibiotic sensitivity against pathogenic bacteria. Jaftex is recommended as an antibacterial and anti-plaque mouthwash.


2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Asifa Mushtaq ◽  
Musharaf Gul ◽  
Seema Rawat ◽  
Jay Krishan Tiwari

Actinomycetes are prolific producers of secondary metabolites majority of which have phenomenal industrial applications. Actinomycetes recovered from cave habitats have generated a considerable interest among the scientific community with respect to their adaptability under such unique environmental conditions. Garhwal Himalaya, Uttarakhand abodes several pristine caves which have not been previously explored for the presence of actinomycetes. The present study has been undertaken to assess the in vitro antibacterial properties of actinomycetes recovered from some of the caves located in Garhwal Himalayan region. In the present study, a total of 127 actinomycetes were isolated from three distinct caves. Majority of the isolates exhibited antibacterial activity against gram-positive bacteria. Actinomycetes isolates RCM1 and SCMM1 were observed to evince promising antibacterial activities. Members of Streptomyces genus were found to be predominant in all the samples.


2021 ◽  
Vol 6 (3) ◽  
pp. 189-195
Author(s):  
Hary Widjajanti ◽  
Christina Vivid Handayani ◽  
Elisa Nurnawati

The antibiotic resistance of phatogenic bacteria has become a serious health problem and has encouraged the search for novel and effective antimicrobial metabolites. Meanwhile, endophytic fungi have great potential as a natural source for antimicrobial agents. The endophytic fungi that live in plant tissue produces secondary metabolites which potentially act as an antibacterial compound. The isolation of fungi for antibacterial sources reduces the large amount of plant as a source of antibacterial agents. Hence, this study aims to obtain endophytic fungi isolates from Paederia foetida L. that are capable of producing secondary metabolites as antibacterial, carry out in vitro tests to verify the antibacterial properties of secondary metabolites of the Paederia foetida L. endophytic fungi, and identify the potential of Paederia foetida L. endophytic fungi in producing antibacterial compounds. The antibacterial activity was tested against Escherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 while seven isolates of endophytic fungi that potentially produced antibacterial were obtained from Sembukan (P. foetida L.). The results showed that antibacterial activities of SL1, SL4 and SL6 secondary metabolites against S. aureus ATCC6538 and E. coli ATCC8739 were moderate to strong activities. Furthermore, the Minimum Inhibition Concentration (MIC) of secondary metabolites extract of SL1 against S. aureus ATCC6538 value was 250 ????g/mL while the values of MIC extract of SL4 against S. aureus ATCC6538 and E. coli ATCC8739 were 125 ????g/mL and 250 ????g/mL respectively and MIC extract of SL6 against E. coli ATCC8739 value was 125 ????g/mL. The secondary metabolites extract of SL1 isolate were alkaloid and tannin, SL4 were phenolic and alkaloid while SL6 isolate were alkaloid and terpenoid. Hence, endophytic fungi SL1 isolate was identified as Fusarium sp., SL4 as Dematophora sp., and SL6 isolate as Acremonium sp.


2020 ◽  
Vol 241 ◽  
pp. 122360 ◽  
Author(s):  
Yaping Wang ◽  
Shuyue Zhao ◽  
Guoqiang Li ◽  
Shufang Zhang ◽  
Rongfang Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document