Magnetophoresis Effects on the Flow Characteristics of Oil-Based Ferrofluids in Rectangular Enclosures

2015 ◽  
Vol 15 (10) ◽  
pp. 7451-7456
Author(s):  
Hyeon-Seok Seo ◽  
Jin-Hyo Boo ◽  
Youn-Jea Kim

This study numerically investigated the flow characteristics in a rectangular enclosure filled with oil-based ferrofluid (EFH-1, Ferrotec.) under the influence of external magnetic fields. The rectangular enclosure contained obstacles with different shapes, such as a rectangle and a triangle mounted on the top and bottom wall surfaces. In order to generate external magnetic fields, a permanent magnet was located in the lower part of the rectangular enclosure, and its direction was selected to be either horizontal or vertical. Our results showed that the ferrofluid flow fields were affected by the applied external magnetic field direction and eddy flow phenomena in the working fluid were generated in the vicinity of high magnetic flux density distributions, such as at the edge of the permanent magnet. It was also confirmed that the magnetophoretic force distributions in the analysis model played a significant role in the development of the ferrofluid flow fields.

2009 ◽  
Vol 24 (7) ◽  
pp. 2331-2337 ◽  
Author(s):  
Qiang Wang ◽  
Ao Gao ◽  
Tie Liu ◽  
Feng Liu ◽  
Chao Zhang ◽  
...  

Mn-90.8 wt%Sb alloys were solidified without and with high magnetic fields to investigate the effects of high magnetic fields on the structure evolution of the alloys. It was found that there were only MnSb/Sb eutectics without any primary phase in the alloy at 0 T, whereas a small amount of primary MnSb dendrites appeared in the MnSb/Sb eutectic matrix when the magnetic flux density was 4.4 T. In magnetic fields of 6.6, 8.8, and 11.5 T, both of two primary phases, i.e., MnSb and Sb, occurred in the matrix. In addition, the volume fraction of these two primary phases increased with increasing magnetic flux density. In magnetic fields of 8.8 and 11.5 T, primary MnSb dendrites aligned parallel to the magnetic field direction and gathered at the edge of the specimens. In contrast, primary Sb dendrites gathered in the center region of the specimens.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110087
Author(s):  
Feng Zhou ◽  
Han Zhao ◽  
Xiaoke Liu ◽  
Fujia Wang

Permanent magnet linear motors can cause thrust fluctuation due to cogging and end effects, which will affect the operation stability of the linear motor. In order to solve this problem, a new method of eliminating alveolar force by using phase-shifting and displacement is proposed in this paper. Taking the cylindrical permanent magnet linear motor as an example, the traditional cylindrical permanent magnet linear motor is divided into two unit-motors, and established finite element analysis model of cylindrical permanent magnet linear motor. It is different from other traditional methods, the thrust fluctuation was reduced by both phase-shifting and displacement simultaneously in this paper, and through simulation analysis, it is determined that the thrust fluctuation suppression effect was the best when the cogging distance was shifted by half. Furthermore, a comparative simulation was made on whether the magnetic insulating material was used. The simulation results show that: The method proposed in this paper can effectively suppress the thrust fluctuation of the cylindrical permanent magnet linear motor. And it can be applied to other similar motor designs. Compared with the traditional method of suppressing thrust fluctuation, the mechanical structure and the technological process of suppressing thrust fluctuation used in this method are simpler.


2019 ◽  
Vol 81 (4) ◽  
Author(s):  
Hari Prasetijo ◽  
Winasis Winasis ◽  
Priswanto Priswanto ◽  
Dadan Hermawan

This study aims to observe the influence of the changing stator dimension on the air gap magnetic flux density (Bg) in the design of a single-phase radial flux permanent magnet generator (RFPMG). The changes in stator dimension were carried out by using three different wire diameters as stator wire, namely, AWG 14 (d = 1.63 mm), AWG 15 (d = 1.45 mm) and AWG 16 (d = 1.29 mm). The dimension of the width of the stator teeth (Wts) was fixed such that a larger stator wire diameter will require a larger stator outside diameter (Dso). By fixing the dimensions of the rotor, permanent magnet, air gap (lg) and stator inner diameter, the magnitude of the magnetic flux density in the air gap (Bg) can be determined. This flux density was used to calculate the phase back electromotive force (Eph). The terminal phase voltage (V∅) was determined after calculating the stator wire impedance (Z) with a constant current of 3.63 A. The study method was conducted by determining the design parameters, calculating the design variables, designing the generator dimensions using AutoCad and determining the magnetic flux density using FEMM simulation.  The results show that the magnetic flux density in the air gap and the phase back emf Eph slightly decrease with increasing stator dimension because of increasing reluctance. However, the voltage drop is more dominant when the stator coil wire diameter is smaller. Thus, a larger diameter of the stator wire would allow terminal phase voltage (V∅) to become slightly larger. With a stator wire diameter of 1.29, 1.45 and 1.63 mm, the impedance values of the stator wire (Z) were 9.52746, 9.23581 and 9.06421 Ω and the terminal phase voltages (V∅) were 220.73, 221.57 and 222.80 V, respectively. Increasing the power capacity (S) in the RFPMG design by increasing the diameter (d) of the stator wire will cause a significant increase in the percentage of the stator maximum current carrying capacity wire but the decrease in stator wire impedance is not significant. Thus, it will reduce the phase terminal voltage (V∅) from its nominal value.


Author(s):  
K. M. Akyuzlu ◽  
Y. Pavri ◽  
A. Antoniou

A two-dimensional, mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature contours inside a rectangular enclosure filled with a compressible fluid (Pr=1.0). One of the vertical walls of the enclosure is kept at a higher temperature then the opposing vertical wall. The top and the bottom of the enclosure are assumed insulated. The physics based mathematical model for this problem consists of conservation of mass, momentum (two-dimensional Navier-Stokes equations) and energy equations for the enclosed fluid subjected to appropriate boundary conditions. The working fluid is assumed to be compressible through a simple ideal gas relation. The governing equations are discretized using second order accurate central differencing for spatial derivatives and first order forward finite differencing for time derivatives where the computation domain is represented by a uniform orthogonal mesh. The resulting nonlinear equations are then linearized using Newton’s linearization method. The set of algebraic equations that result from this process are then put into a matrix form and solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns (primitive variables) of the problem. A numerical experiment is carried out for a benchmark case (driven cavity flow) to verify the accuracy of the proposed solution procedure. Numerical experiments are then carried out using the proposed compressible flow model to simulate the development of the buoyancy driven circulation patterns for Rayleigh numbers between 103 and 105. Finally, an attempt is made to determine the effect of compressibility of the working fluid by comparing the results of the proposed model to that of models that use incompressible flow assumptions together with Boussinesq approximation.


1973 ◽  
Vol 9 (1) ◽  
pp. 1-15 ◽  
Author(s):  
E. E. Nolting ◽  
P. E. Jindra ◽  
D. R. Wells

Detailed measurements of the trapped magnetic fields and currents in plasma structures generated by conical theta-pinches are reported. Studies of these structures interacting with a magnetic barrier, and with each other in a collision at the centre of a magnetic mirror, are reported. The magnetic well formed by the collision has been studied by simultaneous use of several diagnostic techniques. The measurements are in agreement with a force-free, collinear magnetic field configuration (Wells 1972). Arguments relating superposability and collinearity of flow fields to these observations are given.


Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani ◽  
H.-K. Moon ◽  
B. Glezer

Heat transfer and fluid mechanics results are given for a swirl chamber whose geometry models an internal passage used to cool the leading edge of a turbine blade. The Reynolds numbers investigated, based on inlet duct characteristics, include values which are the same as in the application (18000–19400). The ratio of absolute air temperature between the inlet and wall of the swirl chamber ranges from 0.62 to 0.86 for the heat transfer measurements. Spatial variations of surface Nusselt numbers along swirl chamber surfaces are measured using infrared thermography in conjunction with thermocouples, energy balances, digital image processing, and in situ calibration procedures. The structure and streamwise development of arrays of Görtler vortex pairs, which develop along concave surfaces, are apparent from flow visualizations. Overall swirl chamber structure is also described from time-averaged surveys of the circumferential component of velocity, total pressure, static pressure, and the circumferential component of vorticity. Important variations of surface Nusselt numbers and time-averaged flow characteristics are present due to arrays of Görtler vortex pairs, especially near each of the two inlets, where Nusselt numbers are highest. Nusselt numbers then decrease and become more spatially uniform along the interior surface of the chamber as the flows advect away from each inlet.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2011 ◽  
Vol 301-303 ◽  
pp. 1693-1698
Author(s):  
Hua Li ◽  
Fang Liu

This paper uses ANSYS 10.0 software to analyze and calculate electromagnetic field of the Permanent Magnet Synchronous Generator(PMSG). Verify rationality of magnetic circuit by the results of magnetic flux density and magnetic field intensity; optimize shape of permanent magnet and reduce harmonics quantity by air-gap flux density harmonics analysis, and use value to solve Electromotive Force(EMF). The simulation result proves that the model satisfies the design requirements and can provide theoretical guide for the optimization design of PMSG.


Sign in / Sign up

Export Citation Format

Share Document