Effects of Radio-Frequency Sputtering Power on Low Temperature Formation of MoS2 Thin Films on Soda-Lime Glass Substrates

2020 ◽  
Vol 20 (8) ◽  
pp. 4892-4898
Author(s):  
Zhenqian Zhao ◽  
Min Yu Yin ◽  
Sang Jik Kwon ◽  
Eou-Sik Cho

For the realization of the economical and reliable fabrication process of molybdenum disulfide (MoS2) layers, MoS2 thin films were directly formed a on soda-lime glass substrate by RF sputtering and subsequent rapid thermal annealing (RTA) at a temperature range of 400–550 °C. Using scanning electron microscopy and atomic force microscopy, it was possible to investigate more stable surface morphologies of MoS2 layers at lower RF sputtering powers irrespective of the RTA temperature. Even at an RTA temperature of less than 550 °C, the Raman exhibited more distinct E12g and A1g peaks for the MoS2 layers sputtered at lower RF powers. The X-ray photoelectron spectroscopy results revealed that more distinct peaks were observed at a higher RTA temperature, and the peak positions were moved to higher energies at a lower RF sputtering power. Based on the Hall measurements, higher carrier densities were obtained for the MoS2 layers sputtered at lower RF powers.

2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sea-Fue Wang ◽  
Hsiao-Ching Yang ◽  
Chien-Fong Liu ◽  
Huy-Yun Y. Bor

Mo films prepared under a single deposition condition seldom simultaneously obtain a low resistivity and a good adhesion necessary for use in solar cells. In order to surmount the obstacle, bilayer Mo films using DC sputtering at a higher working pressure and a lower working pressure have been attempted as reported in the literature. In this study, RF sputtering with different powers in conjunction with different working pressures was explored to prepare bilayer Mo film. The first bottom layer was grown at a RF sputtering power of 30 W and a working pressure of 12 mTorr, and the second top layer was deposited at 100 W and 4.5 mTorr. The films revealed a columnar growth with a preferred orientation along the (110) plane. The bilayer Mo films reported an electrical resistivity of 6.35 × 10−5 Ω-cm and passed the Scotch tape test for adhesion to the soda-lime glass substrate, thereby qualifying the bilayer Mo films for use as back metal contacts for CIGS substrates.


2014 ◽  
Vol 1603 ◽  
Author(s):  
Yong Yan ◽  
Shasha Li ◽  
Zhou Yu ◽  
Yong Zhang ◽  
Yong Zhao

ABSTRACTCu2ZnSnSe4 films were deposited on soda lime glass substrates at room temperature by one-step radio frequency magnetron-sputtering process. The effect of sputtering power on the properties of one-step deposited Cu2ZnSnSe4 thin films has been investigated. The deposited films might be suitable for the absorber layers in the solar cells. The chemical composition and the preferred orientation of the films can be optimized by the sputtering power.


2013 ◽  
Vol 284-287 ◽  
pp. 108-112
Author(s):  
Pin Chuan Yao ◽  
Shih Tse Hang ◽  
Menq Jiun Wu

Transparent conducting Al-doped ZnO (AZO) thin films were deposited on soda-lime glass substrates by DC magnetron sputtering with a sintered ceramic target, AZOY® that contains a small amount of Y2O3 in addition to Al2O3 and ZnO. The effect of substrate temperatures (Ts) on the structural, electrical and optical properties of the prepared AZO films was evaluated extensively. By elevating Ts, the electrical conductivity of the films could be effectively improved from 1.68 ×10-3 cm (no substrates heating) to a minimum resistivity of 4.6210-4 cm at Ts = 400oC with an average visible transmittance (400~800nm) of ~80%. It revealed that substrate heating is closely related to the crystallinity and the surface roughness of the deposited films. It is noteworthy that the transmittance in the NIR region was also improved considerably as compared to those using alloy targets by reactive magnetron sputtering and even slightly higher than those using Al-doped ZnO (1 wt.%) ceramic targets by RF sputtering.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
William Vallejo ◽  
Carlos Diaz-Uribe ◽  
G. Gordillo

In this work, we fabricated system In(O,OH)S/i-ZnO/n+-ZnO to be used as potential optical window in thin films solar cells. i-ZnO/n+-ZnO thin films were synthesized by reactive evaporation (RE) method and In(O,OH)S thin films were synthesized by chemical bath deposition (CBD) method; all thin films were deposited on soda lime glass substrates. Thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), and spectral transmittance measurements. Structural results indicated that both thin films were polycrystalline; furthermore, morphological results indicated that both thin films coated uniformly soda lime glass substrate; besides, optical characterization indicated that system had more than 80% of visible radiation transmittance.


2004 ◽  
Vol 836 ◽  
Author(s):  
Ki-Hyun Kim ◽  
Young-Gab Chun ◽  
Byung-Ok Park ◽  
Kyung-Hoon Yoon

ABSTRACTCIGS nanoparticles for the CIGS absorber layer have been synthesized by low temperature colloidal routes. The CIGS absorber layers for solar cells have been prepared by spray deposition of CIGS nanoparticle precursors (∼20 nm) in glove box under inert atmosphere. An automatic air atomizing nozzle spray system with computer controlled X-Y step motor system was used to spray. The nanoparticle precursor CIGS film was deposited onto molybdenum-coated soda-lime glass substrates (2.5 cm × 5.0 cm) heated to 160°C. The film thickness in the range of 2 μm ± 0.3 μm was attained by spraying of 3 mM colloidal over an area of 12.5 cm2. The coalescence between particles was observed in the CIGS absorber layer under post-treatment of over 550 °C. This is related to the reactive sintering among the nanoparticles to reduce surface energy of the particles. The CuxSe thin film, formed on Mo film by evaporation, improved adhesion between CIGS and Mo layers and enhanced the coalescence of the particles in the CIGS layer. These are closely related to the fluxing of Cu2Se phase which has relatively low melting temperature. The CdS buffer layer was deposited on the CIGS/Mo/soda-lime glass substrate by chemical bath deposition. The CIGS nanoparticles-based absorber layers were characterized by using energy dispersive spectroscopy (EDS), x-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM).


2013 ◽  
Vol 716 ◽  
pp. 325-327
Author(s):  
Xiao Yan Dai ◽  
Cheng Wu Shi ◽  
Yan Ru Zhang ◽  
Min Yao

In this paper, CdTe thin films were deposited on soda-lime glass substrates using CdTe powder as a source by close-spaced sublimation at higher source temperature of 700°C. The influence of the deposition time and the source-substrate distance on the chemical composition, crystal phase, surface morphology and optical band gap of CdTe thin films was systemically investigated by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope and the ultraviolet-visible-near infrared absorption spectra, respectively. At the deposition time of 60 min and the source-substrate distance of 5 mm, the CdTe thin films had pyramid appearance with the grain size of 15 μm.


2010 ◽  
Vol 1268 ◽  
Author(s):  
Jeffrey L. Johnson ◽  
Haritha Nukala ◽  
Ashish Bhatia ◽  
W.M. Hlaing Oo ◽  
Loren W Rieth ◽  
...  

AbstractCu2ZnSnS4 (CZTS) is an alternative material to Cu(In,Ga)Se2 (CIGSe) for use in thin film photovoltaic absorber layers composed solely of commodity elements [1,2]. Thus, if similar material quality and performance can be realized, its use would allow scale-up of terrestrial thin film photovoltaic production unhindered by material price or supply constraints. Here we report on our research on the deposition of CZTS by RF sputtering from a single CZTS target and co-sputtering from multiple binary sources on Mo-coated glass. We find some samples delaminate during post-sputtering furnace annealing in S vapor. Samples on borosilicate glass (BSG) delaminate much more frequently than those on soda-lime glass (SLG). We investigate the influences of the formation of frangible phases such as MoS2 at the CZTS/Mo interface and residual and thermal mismatch stress on delamination. We implicate fracture in a layer of MoS2 as the mechanism of delamination between the Mo and CZTS layers using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Wafer curvature measurements show significant (˜400 MPa) deposition stress for minimally optimized Mo deposition; however nearly stress-free Mo layers with good adhesion can be deposited using a multi-step Mo deposition recipe. Co-sputtering CZTS adds 100 MPa of stress on both BSG and SLG, however delamination is nearly absent for samples deposited on low-stress Mo layers. We investigate metallic diffusion barrier layers to prevent the formation of MoS2 at the interface. Lastly we discuss the importance of removing Mo oxide by sputter etching before CZTS deposition and its effects on adhesion and series resistance.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Weimin Li ◽  
Xia Yan ◽  
Armin G. Aberle ◽  
Selvaraj Venkataraj

Molybdenum (Mo) thin films are widely used as rear electrodes in copper indium gallium diselenide (CIGS) solar cells. The challenge in Mo deposition by magnetron sputtering lies in simultaneously achieving good adhesion to the substrates while retaining the electrical and optical properties. Bilayer Mo films, comprising five different thickness ratios of a high pressure (HP) deposited bottom layer and a low pressure (LP) deposited top layer, were deposited on 40 cm × 30 cm soda-lime glass substrates by DC magnetron sputtering. We focus on understanding the effects of the individual layer properties on the resulting bilayer Mo films, such as microstructure, surface morphology, and surface oxidation. We show that the thickness of the bottom HP Mo layer plays a major role in determining the micromechanical and physical properties of the bilayer Mo stack. Our studies reveal that a thicker HP Mo bottom layer not only improves the adhesion of the bilayer Mo, but also helps to improve the film crystallinity along the preferred [110] direction. However, the surface roughness and the porosity of the bilayer Mo films are found to increase with increasing bottom layer thickness, which leads to lower optical reflectance and a higher probability for oxidation at the Mo surface.


Sign in / Sign up

Export Citation Format

Share Document