Effect of Thermal Interface Materials on Heat Dissipation of Light-Emitting Diode Headlamps with Thermally-Conductive Plastics

2021 ◽  
Vol 21 (7) ◽  
pp. 3721-3728
Author(s):  
Dong Kyu Lee ◽  
Yu-Jung Cha ◽  
Joon Seop Kwak

We study the effect of thermal interface material such as thermal-conductive plastic on the dissipation of generated heat from the light-emitting diodes (LEDs) based headlamp for the application of environment-friendly green energy in vehicles. The thermal distribution and the performances of thermal-conductive plastic with heatsink are consistently investigated by using experimental and numerical results. Various thicknesses of thermal-conductive plastics from 0.3 mm to 1.0 mm used in this research work. Basically the thermal-conductive plastic reduces the thermal interface resistance between the contact of two solid surfaces. As a result, High electrical power of about 15 W (1 A and 15 V) can be possible for applying to the high-power LED package without any damage. The soldering temperature of LED package without thermal-conductive plastic shows approximately 138.7 °C which is higher compared to the LED package with thermal-conductive plastic (124.3 °C). On the other hand, the soldering temperature increases from 124.3 to 127.6 °C with increasing the thicknesses of thermal-conductive plastic. In addition, the soldering temperature decreases from 138.7 to 124.3 °C with increasing the thermal conductivities of thermal-conductive plastic. Finally, a highly thermal conductive property of thermal-conductive plastic will propose for optimum dissipation of generated heat from the LEDs-based headlamp. We also successfully estimate the junction temperature of packaged LEDs by using soldering temperature.

2021 ◽  
pp. 002199832110595
Author(s):  
Weontae Oh ◽  
Jong-Seong Bae ◽  
Hyoung-Seok Moon

The microstructural change of graphite was studied after ultrasonic treatment of the graphite. When the graphite solution was treated with varying ultrasonic power and time, the microstructure changed gradually, and accordingly, the thermal conductivity characteristics of the composite containing the as-treated graphite was also different with each other. Thermal conductivity showed the best result in the silicone composite containing graphite prepared under the optimum condition of ultrasonic treatment, and the thermal conductivity of the composite improved proportionally along with the particle size of graphite. When the silicone composite was prepared by using a mixture of inorganic oxides and graphite rather than graphite alone, the thermal conductivity of the silicone composite was further increased. A silicone composite containing graphite was used for LED (light emitting diode) lighting system as a thermal interface material (TIM), and the temperature elevation due to heat generated, while the lighting was actually operated, was analyzed.


2011 ◽  
Vol 687 ◽  
pp. 215-221
Author(s):  
Yuan Yuan Han ◽  
Hong Guo ◽  
Xi Min Zhang ◽  
Fa Zhang Yin ◽  
Ke Chu ◽  
...  

With increasing of the input power of the chips in light emitting diode (LED), the thermal accumulation of LEDs package increases. Therefore solving the heat issue has become a precondition of high power LED application. In this paper, finite element method was used to analyze the thermal field of high power LEDs. The effect of the heatsink structure on the junction temperature was also investigated. The results show that the temperature of the chip is 95.8°C which is the highest, and it meets the requirement. The conductivity of each component affects the thermal resistance. Convective heat exchange is connected with the heat dissipation area. In the original structure of LEDs package the heat convected through the substrate is the highest, accounting for 92.58%. Three heatsinks with fin structure are designed to decrease the junction temperature of the LEDs package.


2011 ◽  
Vol 216 ◽  
pp. 106-110 ◽  
Author(s):  
Hong Qin ◽  
Da Liang Zhong ◽  
Chang Hong Wang

Thermal management is an important issue for light emitting diodes’ utilization. For high power light emitting diode (LED), active heat dissipation method plays a vital role. As a new cooling device, thermoelectric cooler (TEC) is applied in LED packaging for the precisely temperature controlled advantage. In order to evaluate the thermal performance of the TEC packaging designs in LED, experimental measurement is used to assess the chip’s junction temperature of three different cooling models, which include the heatsink model, the heatsink and fan model and the TEC, heatsink and fan model. Based on the research, it is better to apply TEC cooling methods with the power dissipation of LED less than 35 W and the wind speed is 3.6 m/s. However, the power dissipation of TEC itself plays a vital role of the total power dissipation of LED packaging. The results of economic analysis shows that the LED integrated with TEC package achieves 22.34% and 44.73% electric energy saving under the condition of 20 W and 30 W power dissipation of the LED chip contrasts to the fluorescent lamp, but sacrifices 2.71% electric power under the condition of 10 W power dissipation of the LED chip.


2010 ◽  
Vol 139-141 ◽  
pp. 1433-1437
Author(s):  
Kai Lin Pan ◽  
Jiao Pin Wang ◽  
Jing Liu ◽  
Guo Tao Ren

Heat dissipation and cost are the key issues for light-emitting diode (LED) packaging. In this paper, based on the thermal resistance network model of LED packaging, three-dimensional heat dissipation model of high power multi-chip LED packaging is developed and analyzed with the application of finite element method. Temperature distributions of the current multi-chip LED packaging model are investigated systematically under the different materials of the chip substrate, die attach, and/or different structures of the heat sink and fin. The results show that the junction temperature can be decreased effectively by increasing the height of the heat sink, the width of the fin, and the thermal conductivity of the chip substrate and die attach materials. The lower cost and higher reliability for LED source can be obtained through reasonable selection of materials and structure parameters of the LED lighting system.


2021 ◽  
Vol 11 (19) ◽  
pp. 8844
Author(s):  
He Jiang ◽  
Jiming Sa ◽  
Cong Fan ◽  
Yiwen Zhou ◽  
Hanwen Gu ◽  
...  

The effect of correlated color temperature (CCT) on the thermal performance of light emitting diode (LED) filament in flip-chip packaging was investigated in detail. Two filaments with different lengths were selected as the research object, and the thermal resistance of filaments under three CCT (2200 K, 2400 K, 2700 K) were studied. The optical properties and thermal parameters of the two groups of filaments were measured, and the results were analyzed combined with the color coordinate. The experimental results show that thermal properties of LED filaments is closely related to CCT. Under constant current condition, junction temperature decreases with the increase of color difference. With the change of phosphor glue and phosphorus powder ratio, the color temperature of LED filament also changes. In the filaments with the same chip structure and packaging mechanism, the higher the proportion of red phosphorescent powder, the worse the heat dissipation performance of the filament. These results show that in the design and manufacture of LED filament, it is helpful to control the CCT of LED filament under the premise of meeting the use requirements.


2016 ◽  
Vol 138 (1) ◽  
Author(s):  
S. Shanmugan ◽  
O. Zeng Yin ◽  
P. Anithambigai ◽  
D. Mutharasu

All solid-state lighting products produce heat which should be removed by use of a heat sink. Since the two mating surfaces of light emitting diode (LED) package and heat sink are not flat, a thermal interface material (TIM) must be applied between them to fill the gaps resulting from their surface roughness and lack of coplanarity. The application of a traditional TIM may squeeze out when pressure is applied to join the surfaces and hence a short circuit may result. To avoid such a problem, a thin solid film based TIM has been suggested. In this study, a zinc oxide (ZnO) thin film was coated on Cu substrates and used as the TIM. The ZnO thin film coated substrates were used as heat sink purposes in this study. The prepared heat sink was tested with 3 W green LED and the observed results were compared with the results of same LED measured at bare and commercial thermal paste coated Cu substrates boundary conditions. The influence of interface material thickness on total thermal resistance (Rth-tot), rise in junction temperature (TJ), and optical properties of LED was analyzed. A noticeable reduction in Rth-tot (5.92 K/W) as well as TJ (ΔTJ = 11.83 °C) was observed for 800 nm ZnO thin film coated Cu substrates boundary conditions when compared with bare and thermal paste coated Cu substrates tested at 700 mA. Change in TJ influenced the thermal resistance of ZnO interface material. Improved lux level and decreased correlated color temperature (CCT) were also observed with ZnO coated Cu substrates.


2014 ◽  
Vol 893 ◽  
pp. 803-806 ◽  
Author(s):  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Vithyacharan Retnasamy

The optical efficacy and reliability of light emitting diode is extensively influenced by the operating junction temperature of the LED. Therefore, the evaluation of junction temperature is significant. This paper reports a simulation analysis on the heat dissipation of single chip LED package with based material, copper diamond (Cu/Dia) cylindrical heat slug.Ansys version 11 was utilized as the simulation platform. The junction temperature and stress of the LED chip under natural convection condition were evaluated with varied input power of 0.1 W, 0.5 W and 1 W. Results indicated the maximum junction temperature of LED chip was attained at input power of 1 W.


2016 ◽  
Vol 33 (3) ◽  
pp. 331-339 ◽  
Author(s):  
M.-Y. Tsai ◽  
C.-Y. Tang ◽  
C.-E. Zheng ◽  
Y.-Y. Tsai ◽  
C.-H. Chen

AbstractThe effects of various parameters, such as thermal properties of substrates, thermal interface materials (TIMs) and heat sinks on the thermal performance of the light emitting diode (LED) light bars and backlight module are investigated experimentally and numerically in terms of junction temperature (Tj) and thermal resistances from junction to air (Rj-a). The results show that the measured Rj-a of the light bars by powering-on five LEDs in the test is different from one by powering-on only one LED, resulting from the extra heat coming from the adjacent LED packages affecting the Tj for the case of powering-on five LEDs. For the modules, Rj-a is significantly reduced by using the heat sinks for all backlight modules, and aluminum and iron heat sinks do not show any obvious difference in heat dissipation along with any substrates and TIMs. Furthermore, both experimental and simulation results show that the thermal conductivity of the substrates are more important and dominant than TIM and heat sink for the Rj-a of the backlight modules concerned, and also demonstrate that the thermal field for the local model can represent the one in full-scale backlight module.


Sign in / Sign up

Export Citation Format

Share Document