Optimal Logic Architecture and Supply Voltage Selection Method to Reduce the Impact of the Threshold Voltage Variation on the Timing

2011 ◽  
Vol 7 (2) ◽  
pp. 285-293
Author(s):  
Bahman Kheradmand-Boroujeni ◽  
Christian Piguet ◽  
Yusuf Leblebici
Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2351
Author(s):  
Jina Bae ◽  
Hyoungsik Nam

This paper proposes an OLED pixel compensation circuit that copes with threshold voltage variation, narrow data voltage range, and body effect on a backplane of silicon-based transistors. It consists of six PMOS transistors and two capacitors. The data voltage range is extended by the capacitor division with two capacitors, and the connection of both source and gate nodes to the supply voltage makes the driving transistor free from the body effect. In addition, the reference voltage is used to initialize the gate node voltage of the driving transistor as well as to adjust the data voltage region. By the SPICE simulation, it is verified that the current error over the threshold voltage variations of ±10 mV is reduced to be −1.200% to 0.964% at the maximum current range of around 8 nA, and the data voltage range is extended to 3.4 V, compared to the large current error range from −21.46% to 27.36% and the data voltage range of 0.41 V in the basic 2T1C circuit. In addition, the body-effect-free circuit outperforms the latest 4T1C circuit of the current error range from −3.279% to 3.388%.


2008 ◽  
Vol 47 (4) ◽  
pp. 2733-2735 ◽  
Author(s):  
Yimao Cai ◽  
Yun Heub Song ◽  
Wook-Hyun Kwon ◽  
Bong Yong Lee ◽  
Chan-Kwang Park

2019 ◽  
Vol 9 (4) ◽  
pp. 504-511
Author(s):  
Sikha Mishra ◽  
Urmila Bhanja ◽  
Guru Prasad Mishra

Introduction: A new analytical model is designed for Workfunction Modulated Rectangular Recessed Channel-Silicon On Insulator (WMRRC-SOI) MOSFET that considers the concept of groove gate and implements an idea of workfunction engineering. Methods: The impact of Negative Junction Depth (NJD) and oxide thickness (tox) are analyzed on device performances such as Sub-threshold Slope (SS), Drain Induced Barrier Lowering (DIBL) and threshold voltage. Results: The results of the proposed work are evaluated with the Rectangular Recessed Channel-Silicon On Insulator (RRC-SOI) MOSFET keeping the metal workfunction constant throughout the gate region. Furthermore, an analytical model is developed using 2D Poisson’s equation and threshold voltage is estimated in terms of minimum surface potential. Conclusion: In this work, the impact of Negative Junction Depth (NJD) on minimum surface potential and the drain current are also evaluated. It is observed from the analysis that the analog switching performance of WMRRC-SOI MOSFET surpasses RRC-SOI MOSFET in terms of better driving capability, high Ion/Ioff ratio, minimized Short Channel Effects (SCEs) and hot carrier immunity. Results are simulated using 2D Sentaurus TCAD simulator for validation of the proposed structure.


2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


2001 ◽  
Vol 664 ◽  
Author(s):  
C. Y. Wang ◽  
E. H. Lim ◽  
H. Liu ◽  
J. L. Sudijono ◽  
T. C. Ang ◽  
...  

ABSTRACTIn this paper the impact of the ESL (Etch Stop layer) nitride on the device performance especially the threshold voltage (Vt) has been studied. From SIMS analysis, it is found that different nitride gives different H concentration, [H] in the Gate oxide area, the higher [H] in the nitride film, the higher H in the Gate Oxide area and the lower the threshold voltage. It is also found that using TiSi instead of CoSi can help to stop the H from diffusing into Gate Oxide/channel area, resulting in a smaller threshold voltage drift for the device employed TiSi. Study to control the [H] in the nitride film is also carried out. In this paper, RBS, HFS and FTIR are used to analyze the composition changes of the SiN films prepared using Plasma enhanced Chemical Vapor deposition (PECVD), Rapid Thermal Chemical Vapor Deposition (RTCVD) with different process parameters. Gas flow ratio, RF power and temperature are found to be the key factors that affect the composition and the H concentration in the film. It is found that the nearer the SiN composition to stoichiometric Si3N4, the lower the [H] in SiN film because there is no excess silicon or nitrogen to be bonded with H. However the lowest [H] in the SiN film is limited by temperature. The higher the process temperature the lower the [H] can be obtained in the SiN film and the nearer the composition to stoichiometric Si3N4.


Sign in / Sign up

Export Citation Format

Share Document