Expression and role of miR-637 before and after lymphadenectomy for thyroid carcinoma

2021 ◽  
Vol 11 (7) ◽  
pp. 1245-1253
Author(s):  
Yanqing Qu ◽  
Xiaoyu Chu ◽  
Cuihong Dong ◽  
Weijiao Wang ◽  
Xiaojian Zhang

Thyroid carcinoma (TC) is a common endocrine malignancy that can be partially relieved by surgery, but its recurrence rate remains high. It is speculated that miR-637 exerts certain influence in its occurrence and development. Accordingly, we included 87 TC patients and 72 concurrent healthy controls as the research participants and purchased human papillary thyroid carcinoma cells with which to study and analyze the biological significance of miR-637. The determination of miR-637 and SH2B1 in peripheral blood and tissues was performed using nanoparticle-assisted polymerase chain reaction assay, and the identification of cell proliferation and apoptosis was made by MTT, Transwell, and flow cytometry. The results indicated that after transfection of miR-637 into TPC-1, the cell proliferation and invasion capacities in the mimics-miR-637 group were significantly reduced as compared to that of the inhibition-miR-637 and negative control (NC)-miR groups (P < 0.05). While transfection of SH2B1 into TPC-1 cells led to significantly enhanced cell proliferation and invasion capacities in sh-SH2B1 group than in si-SH2B1 and NC groups (P < 0.05). Finally, a double luciferase reporter assay identified enormously inhibited fluorescence activity of SH2B1-WT by mimics-miR-637. According to the experimental results, it is concluded that miR-637 expression was low in TC but increased after lymphadenectomy for TC. Moreover, by targeting SH2B1, miR-637 interferes with TC progression, which carries significant implications for future diagnosis and treatment of the disease.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fakai Wang ◽  
Huanjun Zhang ◽  
Bing Liu ◽  
Wei Liu ◽  
Zengchao Zhang

Accumulating studies have suggested the dysregulated microRNAs (miRNAs) play important roles in brain tumors, including glioma. miR-6869-5p has been documented to be aberrantly expressed in diverse cancers. However, the precise role of miR-6869-5p in glioma remains poorly understood. This study is aimed at evaluating its modifying effects on glioma. Significantly decreased expression of miR-6869-5p was found in glioma tissues and cells. Negative association was documented between miR-6869-5p and PGK1 in glioma cells, and PGK1 was demonstrated to be a targeted gene of this miRNA by luciferase reporter assay. miR-6869-5p regulated glioma cell proliferation and invasion via targeting PGK1. In addition, the survival analysis had suggested that low miR-6869-5p expression predicted poor prognosis of glioma patients. This study has suggested that miR-6869-5p is a useful tumor suppressor and prognostic marker in glioma.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ping Zhou ◽  
Tongdao Xu ◽  
Hao Hu ◽  
Fei Hua

Background. Thyroid carcinoma (THCA) is the most frequent endocrine malignancy. Papillary thyroid carcinoma (PTC) is the major subtype of THCA, accounting for over 80% of all THCA cases. LncRNA PAX8-AS1, a tumor suppressor associated with various human cancers, has been reported to be relevant to the regulation of all sorts of cellular processes. The purpose of this study was to verify the role of PAX8-AS1 in PTC. Methods. Three human PTC cell lines (K1, TPC-1, and IHH4) and one normal human thyroid cell line, Nthy-ori3-1, were used in our study. The expression of genes was detected by qRT-PCR. The bioinformatic analysis and luciferase reporter assay were used to confirm the binding relationship of PAX8-AS1 to miR-96-5p, and the targeting relationship of miR-96-5p to PKN2 was also predicted. Cell proliferation and apoptosis capacities were assessed by MTT and flow cytometry, respectively. EdU assay was used to detect cell proliferation. Western blot assay was employed to examine protein expression. Results. The expression of PAX8-AS1 was decreased in PTC tissues and cells. PAX8-AS1 overexpression inhibited the proliferation of PTC cells and promoted cell apoptosis. In addition, PAX8-AS1 bonds with miR-96-5p, whose downregulation elevated the expression of PKN2 in PTC cells. Importantly, according to the rescue experiments, PKN2 silencing partially reversed the inhibitory effects of PAX8-AS1 expression on PTC cell proliferation and apoptosis. Conclusions. We found that the PAX8-AS1/miR-96-5p/PKN2 axis was closely related to the progression of PTC, which could be a potential target for treating PTC patients.


2015 ◽  
Vol 54 (3) ◽  
pp. 325-337 ◽  
Author(s):  
Changgui Shi ◽  
Ping Huang ◽  
Hui Kang ◽  
Bo Hu ◽  
Jin Qi ◽  
...  

The inhibition of osteoblast proliferation by glucocorticoids (GCs) is very important in the etiology of GC-induced osteoporosis. The mechanisms of this process are still not fully understood. The results of recent studies have indicated an important role for microRNAs in GC-mediated responses in various cellular processes, including cell proliferation and apoptosis. Therefore, we developed the hypothesis that these regulatory molecules might be involved in GC-decreased osteoblast proliferation. Western blotting, quantitative real-time PCR, cell proliferation assays, and luciferase assays were employed to investigate the role of miRNAs in GC-inhibited osteoblast proliferation. microRNA-199a-5p was significantly increased in osteoblasts treated with dexamethasone (Dex). To delineate the role of microRNA-199a-5p, we silenced and overexpressed microRNA-199a-5p in osteoblasts. We found that overexpressing microRNA-199a-5p remarkably increased the inhibition effect of Dex on osteoblast proliferation, and depleting microRNA-199a-5p significantly attenuated Dex-inhibited osteoblast proliferation. Results of mechanistic studies indicated that microRNA-199a-5p inhibited FZD4 and WNT2 expression through a microRNA-199a-5p binding site within the 3′-UTR of FZD4 and WNT2. The post-transcriptional repression of FZD4 and WNT2 were further confirmed by luciferase reporter assay. These results indicated that microRNA-199a-5p may play a significant role in GC-inhibited osteoblast proliferation by regulating the WNT signaling pathway.


2021 ◽  
Author(s):  
Mingjun Sun ◽  
Yuefeng He ◽  
Huirong Cheng ◽  
Yongchang Zhang ◽  
Qian Chen ◽  
...  

Abstract Background: Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in methylation metabolism of arsenic. It is closely related to DNA methylation, but little is known about the novel molecular mechanisms.Methods: 79 workers and 41 individuals in the control group were recruited. Arsenic, relative indexes, 28 relative RNAs, and base modifications of exon 5-8 of p53 were detected. Enzyme linked immunosorbent assay(ELISA) was performed to detect the expression of AS3MT protein in all subjects. A series of methods were used to analyze the relationships between them. The AS3MT protein was detected in A549 and 16HBE cells after treated using sodium arsenite, MMA and DMA for 48 hours. Small interfering RNA (siRNA) transfection was used to investigate the role of AS3MT in arsenite-induced tumorigenesis. The cell proliferation and apoptosis were assessed with MTT assay, EdU assay, HO/PI double staining and JC-1 assay. The real-time quantitative PCR (qRT-PCR) and Western Blot analyses were used to evaluate the expression of genes. The p53 luciferase reporter gene assay and Co-immunoprecipitation (Co-IP) were used to identify the interactions of target proteins.Results: AS3MT RNA is closely related to p53, a series of ncRNAs and mRNAs, and likely to have causal correlations. Base modifications of p53, miR-548 and miR-190 have significant distinctive effects, but arsenic may play limited roles. AS3MT is over expression in lung cancer patients who have not exposed to arsenic, human lung adenocarcinoma and bronchial epithelial cells with arsenic treatment for 48h. AS3MT protein is induced in arsenic exposed population. Down regulation of AS3MT inhibit proliferation and promotes apoptosis of cells. Mechanistically, AS3MT specifically bind with c-Fos, and block the binding ability between c-Fos and c-Jun. Additionally, knockdown of AS3MT mediated by siRNA enhance the phosphorylation level of p53 Ser392 through activating p38 MAPK. These probably lead to activation of p53 signaling and up regulation in downstream targets, such as p21, Fas, Puma and Bax.Discussion: Here showed that AS3MT RNA plays a great role in the genotoxicity and carcinogenesis which started by arsenic, but influenced by other factors. Up regulation of AS3MT can directly act on cell, and affect cell proliferation and apoptosis through activation of p53 signaling and up regulation in downstream targets.


2019 ◽  
Vol 317 (4) ◽  
pp. H830-H839 ◽  
Author(s):  
Zhen Liu ◽  
Zhenming Kang ◽  
Yujian Dai ◽  
Huiming Zheng ◽  
Yingjun Wang

Infantile hemangiomas (IH) are a type of benign vascular neoplasm that may cause permanent scarring. Hemangioma-derived endothelial cells (HemECs) are commonly used as an in vitro model to study IH. Long noncoding RNA is a type of RNA transcript longer than 200 nucleotides that does not encode any protein. LINC00342 was discovered to regulate proliferation and apoptosis in nonsmall cell lung cancer. However, the role of LINC00342 in IH has never been reported before. Expressions of LINC00342 and miR-3619-5p were detected in proliferating versus normal skin tissues. Colony formation and Cell-Couting Kit 8 assays were carried out to study the effects on cell proliferation after knockdown and overexpression of LINC00342, respectively. Meanwhile caspase-3 activity and nucleosomal fragmentation assay were applied to detect cell apoptosis. Micro-RNA binding sites on LINC00342 and hepatoma-derived growth factor (HDGF) were predicted and confirmed via dual-luciferase reporter assay. Biotin RNA pulldown assay was used to verify the direct binding between RNA molecules. LINC00342 enhanced proliferation and inhibited apoptosis in HemECs. MiR-3619-5p targeted both LINC00342 and HDGF, where LINC00342 sponged miR-3619-5p and positively regulated HDGF. HDGF knockdown rescued the effects of LINC00342 on HemECs. The LINC00342-miR-3619-5p-HDGF signaling pathway could regulate cell proliferation and apoptosis in HemECs. NEW & NOTEWORTHY The role of LINC00342 in infantile hemangiomas has not yet been elucidated. This paper highlights the regulatory role of LINC00342 in cell proliferation and apoptosis in hemangioma-derived endothelial cells and the underlying molecular mechanisms. The findings would provide potential target for treatment of infantile hemangiomas.


2019 ◽  
Vol 51 (9) ◽  
pp. 900-907 ◽  
Author(s):  
Jiying Huang ◽  
Manru Shen ◽  
Meizhu Yan ◽  
Ying Cui ◽  
Zhenjun Gao ◽  
...  

Abstract Currently, exosomes rich in RNAs and proteins are regarded as vital mediators of intercellular communication. Here, we aimed to explore the effects of exosomal miR-1290 in gastric cancer (GC) and understand its mechanism of action on GC progression. We first isolated exosomes from serum samples of GC patients and healthy people and characterized them by transmission electron microscopy. Then, we examined the expression level of miR-1290 contained in the exosomes by quantitative reverse-transcription polymerase chain reaction and found that exosomal miR-1290 was overexpressed in GC patients and cell lines. Promotion of proliferation, migration, and invasiveness of GC cells was noted after they were incubated with the isolated miR-1290-rich exosomes compared with incubation with a negative control. Furthermore, we predicted that naked cuticle homolog 1 (NKD1) mRNA is a direct target of miR-1290 and confirmed their interaction by a dual luciferase reporter assay. NKD1 overexpression attenuated the stimulatory effects of miR-1290 on GC cells. Collectively, our results suggest that exosomal miR-1290 enhances GC cell proliferation and invasion by targeting NKD1 mRNA and downregulating NKD1 expression. A better understanding of this process may facilitate the development of novel therapeutic agents for GC.


2020 ◽  
Author(s):  
Jing Yang ◽  
Judong Luo ◽  
Feng Wang ◽  
Zhiwen Cheng ◽  
Xia Han ◽  
...  

Abstract Background: Pancreatic cancer(PC) is seriously harmful to human health, and the pathogenesis is not clear. The present study aimed to explore the functional role of syncytin-1 in PC.Methods: Syncytin-1 and miR-31 expression was analyzed by qRT-PCR and Western blot analysis in both human PC cell lines and tissuse. The prognostic significance of syncytin-1 was investigated using the immunohistochemistry(IHC) and Kaplan-Meier survival. The CCK-8 assay and transwell assays were used to determine the role of syncytin-1 and miR-31 in cell proliferation, migration and invasion. Luciferase reporter assays was used to identify possible miRNA targets in tumorigenesis.Results: The results showed that the syncytin-1 level was significantly decreased in PC cell lines and tissues than normal(P < 0.05), while miR-31 was markedly higher than normal(P < 0.05), and low expression of syncytin-1 have a poor prognosis than high expression(P < 0.05). Overexpression of syncytin-1 significantly reduced the PC cell proliferation and invasion ability in PANC-1 and BxPC-3 cells(P < 0.05), and miR-31showed contrary results. The Dual-Luciferase reporter gene assay demonstrated that miR-31 binded directly to 3’UTR of syncytin-1 and resulting in the inhibition of syncytin-1. The overexpression of miR-31 promoted migration and proliferation of PC cells through down-regulating the expression of syncytin-1.Conclusion: We verified that syncytin-1 can inhibit proliferation and invasion of PC cell lines by targeting miR-31.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuting Hu ◽  
Wei Qiu ◽  
Zhijun Kong ◽  
Siyuan Wu ◽  
Yi Liu ◽  
...  

Mounting evidence has recently shown that role of long noncoding RNA is critical in many human cancers. lncRNA GSTM3TV2 was first proven to play a vital role in pancreatic cancer. However, the mechanism of lncRNA GSTM3TV2 in hepatocellular carcinoma (HCC) is still uncovered. Here, we object to distinguish the expression of lncRNA GSTM3TV2 and reveal its mechanistic relationship with HCC. We observed that the expression of lncRNA GSTM3TV2 and FOSL2 were upregulated in HCC. Knockdown of lncRNA GSTM3TV2 significantly inhibited cell proliferation. Meanwhile, the migration and invasion of HCC cells were greatly decreased by the downregulated lncRNA GSTM3TV2. The luciferase reporter assays showed that lncRNA GSTM3TV2 could be directly bound to miR-597, and the level of miR-597 was also decreased in the tumor tissues. lncRNA GSTM3TV2 could stabilize FOSL2 expression, resulting in the oncogenic properties of lncRNA GSTM3TV2 in HCC. Our study indicated the oncogenic activities of lncRNA GSTM3TV2 and emphasized the role of the miR-597/FOSL2 signaling pathway.


2020 ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective: Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods: CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Human HCC tissues were collected to study the clinical significance VPS35 and β-catenin. Results: Firstly, KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Conclusion: We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


Sign in / Sign up

Export Citation Format

Share Document