Tumor Therapeutics via Highly Efficient miRNA Delivery to Human Nasopharyngeal Cancer Cells by Multifunctional Magnetic Nanoparticles

2020 ◽  
Vol 12 (1) ◽  
pp. 69-78
Author(s):  
Weimin Wu ◽  
Zhongwen Chen ◽  
Xia Li ◽  
Jianjun Wang ◽  
Lihong Fan ◽  
...  

Efficient delivery of miRNA to target cells remains a significant challenge in clinical applications. In this research, we constructed a multifunctional miRNA (miR) delivery system composed of miRexpressing plasmids mediated by Fe3O4-polyethyleneimine (PEI) nanoparticles (NPs). Fe3O4-PEImiR-expressing plasmid NPs targeting HIF-1 or Survivin gene were respectively constructed and transfected into human nasopharyngeal carcinoma (NPC) CNE-II cells. The stability of Fe3O4 PEI-miR NPs was experimentally confirmed by serum protection assay. The antitumor effects of Fe3O4-PEI-miR NPs on CNE-II cells proliferation, apoptosis, and radiosensitivity were studied by employing the Cell Counting Kit (CCK-8) experiment, flow cytometry (FCM) analysis and radiosensitivity test. The antitumor efficiency of Fe3O4-PEI-miR NPs was investigated by qRT-PCR and Western blot. The Fe3O4-PEI-miR-expressing plasmid NPs were shown to be successfully established with favorable stability, enhanced biocompatibility and lower cytotoxicity, compared with Lipofectamine 2000. In addition, down-regulation of HIF-1 or Survivin was validated to improve antitumor effects and radiosensitivity of NPC cells through proliferating cell nuclear antigen (PCNA). Transfection of miR-HIF-1 /Survivin by Fe3O4-PEI NPs to CNE-II cells effectively inhibited NPC cell proliferation, induced cell apoptosis, and increased radiosensitivity. Fe3O4-PEI NPs were shown to be ideal gene carriers capable of novel gene therapy for treating human NPC.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Godwin Adakole Ujah ◽  
Victor Udo Nna ◽  
Joseph Bagi Suleiman ◽  
Chinedum Eleazu ◽  
Chukwuemeka Nwokocha ◽  
...  

AbstractDoxorubicin (DOX) is a broad-spectrum chemotherapeutic drug used in the treatment of cancers. It acts by generating reactive oxygen species in target cells. The actions are, however, not limited to cancerous cells as it attacks healthy cells, killing them. This study investigated the benefits of the antioxidant, tert-butylhydroquinone (tBHQ), on testicular toxicity following DOX therapy. Twenty-four adult male albino rats were assigned randomly into four groups (n = 6), namely: normal control (NC), tBHQ, DOX and tBHQ + DOX groups. tBHQ (50 mg/kg body weight in 1% DMSO) was administered orally for 14 consecutive days, while a single DOX dose (7 mg/kg body weight) was administered intraperitoneally on Day 8. DOX decreased sperm count, motility and viability, and decreased the levels of steroidogenesis-related proteins, and reproductive hormones. Furthermore, DOX decreased the expression of antioxidant cytoprotective genes, and decreased the protein level of proliferating cell nuclear antigen in the testis. Conversely, DOX increased the expression of pro-inflammatory and pro-apoptotic genes in the testis. These negative effects were ameliorated following the intervention with tBHQ. Our results suggest that tBHQ protects the testis and preserves both steroidogenesis and spermatogenesis in DOX-treated rats through the suppression of oxidative stress, inflammation and apoptosis.


2016 ◽  
Vol 113 (13) ◽  
pp. E1777-E1786 ◽  
Author(s):  
Mark Hedglin ◽  
Binod Pandey ◽  
Stephen J. Benkovic

In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes fromSaccharomyces cerevisaewhere the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.


2006 ◽  
Vol 84 (5) ◽  
pp. 669-676 ◽  
Author(s):  
Stanislav N. Naryzhny ◽  
Leroi V. DeSouza ◽  
K.W. Michael Siu ◽  
Hoyun Lee

Its toroidal structure allows the proliferating cell nuclear antigen (PCNA) to wrap around and move along the DNA fiber, thereby dramatically increasing the processivity of DNA polymerization. PCNA is also involved in the regulation of a wide spectrum of other biological functions, including epigenetic inheritance. We have recently reported that mammalian PCNA forms a double trimer complex, which may be critically important in coordinating DNA replication and other cellular functions. To gain a better understanding of the stability of PCNA complexes, we characterized the physico-chemical properties of the PCNA structure by in vivo and in vitro approaches. The data obtained by gel filtration and nondenaturing gel electrophoresis of native PCNA molecules confirm our previous observations, obtained using formaldehyde crosslinking, in which PCNA exists in the cell as a double trimer. We have also found that optimal pH (pH 6.5–7.5) is critical for the stability of the PCNA structure. The presence or absence of ATP, dithiothreitol, and Mg2+ does not affect the stability of the PCNA trimer or double trimer. However, 0.02% SDS can effectively inhibit PCNA double trimer, but not single trimer, formation. Interestingly, glycerol and ammonium sulfate significantly destabilize both PCNA trimer and double trimer structures.


2019 ◽  
Vol 19 (8) ◽  
pp. 1021-1028 ◽  
Author(s):  
Fanghua Qiu ◽  
Lifang Liu ◽  
Yu Lin ◽  
Zetian Yang ◽  
Feng Qiu

Background:Esophageal squamous cell carcinoma (ESCC), the most prevalent histologic subtype of esophageal cancer, is an aggressive malignancy with poor prognosis and a high incidence in the East. Corilagin, an active component present in Phyllanthus niruri L., has been shown to suppress tumor growth in various cancers. However, the effects of corilagin on ESCC and the mechanisms for its tumor suppressive function remain unknown.Methods:Cell proliferation was measured by Cell Counting Kit-8 assay and colony formation assays. Annexin V/PI double-staining was performed to assess cell apoptosis. Immunofluorescence staining and western blotting were used to evaluate the protein expression. A xenograft mice model was used to assess the in vivo antitumor effects of corilagin alone or in combination with cisplatin.Results:We for the first time showed that corilagin was effectively able to inhibit ESCC cell proliferation and induce cell apoptosis. Additionally, our results validated its antitumor effects in vivo using a xenograft mouse model. Mechanistically, we found that corilagin caused significant DNA damage in ESCC cells. We found that corilagin could significantly attenuate the expression of the E3 ubiquitin ligase RING finger protein 8 (RNF8) through ubiquitin-proteasome pathway, leading to the inability of DNA damage repair response and eventually causing cell apoptosis. Furthermore, we also showed that corilagin substantially enhanced the antitumor effects of chemotherapy drug cisplatin both in vitro and in vivo.Conclusion:Our results not only provided novel and previously unrecognized evidences for corilagin-induced tumor suppression through inducing DNA damage and targeting RNF8 in ESCC, but also highlighted that corilagin might serve as an adjunctive treatment to conventional chemotherapeutic drugs in ESCC patients.


Pathology ◽  
2021 ◽  
Vol 53 ◽  
pp. S47
Author(s):  
Christine Bundell ◽  
Mathew Krummenacher ◽  
Elina Tan ◽  
Paul Sjollema ◽  
Nick Acquarola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document