scholarly journals Differential Patterns of Activation and Deactivation among Brain Regions Selective for Face and Scene Processing

2021 ◽  
Vol 21 (9) ◽  
pp. 2107
Author(s):  
Vivian T.-Y. Peng ◽  
Peter K.-H. Cheng ◽  
Cody L.-S. Wang ◽  
Gary C.-W. Shyi ◽  
S.-T. Tina Huang
2011 ◽  
Vol 23 (12) ◽  
pp. 4174-4184 ◽  
Author(s):  
Caitlin R. Mullin ◽  
Jennifer K. E. Steeves

The study of brain-damaged patients and advancements in neuroimaging have lead to the discovery of discrete brain regions that process visual image categories, such as objects and scenes. However, how these visual image categories interact remains unclear. For example, is scene perception simply an extension of object perception, or can global scene “gist” be processed independently of its component objects? Specifically, when recognizing a scene such as an “office,” does one need to first recognize its individual objects, such as the desk, chair, lamp, pens, and paper to build up the representation of an “office” scene? Here, we show that temporary interruption of object processing through repetitive TMS to the left lateral occipital cortex (LO), an area known to selectively process objects, impairs object categorization but surprisingly facilitates scene categorization. This result was replicated in a second experiment, which assessed the temporal dynamics of this disruption and facilitation. We further showed that repetitive TMS to left LO significantly disrupted object processing but facilitated scene processing when stimulation was administered during the first 180 msec of the task. This demonstrates that the visual system retains the ability to process scenes during disruption to object processing. Moreover, the facilitation of scene processing indicates disinhibition of areas involved in global scene processing, likely caused by disrupting inhibitory contributions from the LO. These findings indicate separate but interactive pathways for object and scene processing and further reveal a network of inhibitory connections between these visual brain regions.


2021 ◽  
Vol 21 (9) ◽  
pp. 2080
Author(s):  
Gary C.-W. Shyi ◽  
Peter K.-H. Cheng ◽  
Vivian T.-Y. Peng ◽  
Cody L.-S. Wang ◽  
S.-T. Tina Huang

2020 ◽  
Author(s):  
Elissa M. Aminoff ◽  
Michael J. Tarr

AbstractRapid visual perception is often viewed as a bottom-up process. Category-preferred neural regions are often characterized as automatic, default processing mechanisms for visual inputs of their categorical preference. To explore the sensitivity of such regions to top-down information, we examined three scene-preferring brain regions, the occipital place area (OPA), the parahippocampal place area (PPA), and the retrosplenial complex (RSC), and tested whether the processing of outdoor scenes is influenced by the functional contexts in which they are seen. Context was manipulated by presenting real-world landscape images as if being viewed through a window or within a picture frame; manipulations that do not affect scene content but do affect one’s functional knowledge regarding the scene. This manipulation influences neural scene processing (as measured by fMRI): the OPA and PPA exhibited greater neural activity when participants viewed images as if through a window as compared to within a picture frame, while the RSC did not show this difference. In a separate behavioral experiment, functional context affected scene memory in predictable directions (boundary extension). Our interpretation is that the window context denotes three-dimensionality, therefore rendering the perceptual experience of viewing landscapes as more realistic. Conversely, the frame context denotes a two-dimensional image. As such, more spatially-biased scene representations in the OPA and the PPA are influenced by differences in top-down, perceptual expectations generated from context. In contrast, more semantically-biased scene representations in the RSC are likely to be less affected by top-down signals that carry information about the physical layout of a scene.


2021 ◽  
pp. 1-13
Author(s):  
Elissa M. Aminoff ◽  
Michael J. Tarr

Abstract Rapid visual perception is often viewed as a bottom–up process. Category-preferred neural regions are often characterized as automatic, default processing mechanisms for visual inputs of their categorical preference. To explore the sensitivity of such regions to top–down information, we examined three scene-preferring brain regions, the occipital place area (OPA), the parahippocampal place area (PPA), and the retrosplenial complex (RSC), and tested whether the processing of outdoor scenes is influenced by the functional contexts in which they are seen. Context was manipulated by presenting real-world landscape images as if being viewed through a window or within a picture frame—manipulations that do not affect scene content but do affect one's functional knowledge regarding the scene. This manipulation influences neural scene processing (as measured by fMRI): The OPA and the PPA exhibited greater neural activity when participants viewed images as if through a window as compared with within a picture frame, whereas the RSC did not show this difference. In a separate behavioral experiment, functional context affected scene memory in predictable directions (boundary extension). Our interpretation is that the window context denotes three-dimensionality, therefore rendering the perceptual experience of viewing landscapes as more realistic. Conversely, the frame context denotes a 2-D image. As such, more spatially biased scene representations in the OPA and the PPA are influenced by differences in top–down, perceptual expectations generated from context. In contrast, more semantically biased scene representations in the RSC are likely to be less affected by top–down signals that carry information about the physical layout of a scene.


Author(s):  
M. C. Whitehead

A fundamental problem in taste research is to determine how gustatory signals are processed and disseminated in the mammalian central nervous system. An important first step toward understanding information processing is the identification of cell types in the nucleus of the solitary tract (NST) and their synaptic relationships with oral primary afferent terminals. Facial and glossopharyngeal (LIX) terminals in the hamster were labelled with HRP, examined with EM, and characterized as containing moderate concentrations of medium-sized round vesicles, and engaging in asymmetrical synaptic junctions. Ultrastructurally the endings resemble excitatory synapses in other brain regions.Labelled facial afferent endings in the RC subdivision synapse almost exclusively with distal dendrites and dendritic spines of NST cells. Most synaptic relationships between the facial synapses and the dendrites are simple. However, 40% of facial endings engage in complex synaptic relationships within glomeruli containing unlabelled axon endings particularly ones termed "SP" endings. SP endings are densely packed with small, pleomorphic vesicles and synapse with both the facial endings and their postsynaptic dendrites by means of nearly symmetrical junctions.


2020 ◽  
Vol 31 (2) ◽  
pp. 62-68
Author(s):  
Sara E. Holm ◽  
Alexander Schmidt ◽  
Christoph J. Ploner

Abstract. Some people, although they are perfectly healthy and happy, cannot enjoy music. These individuals have musical anhedonia, a condition which can be congenital or may occur after focal brain damage. To date, only a few cases of acquired musical anhedonia have been reported in the literature with lesions of the temporo-parietal cortex being particularly important. Even less literature exists on congenital musical anhedonia, in which impaired connectivity of temporal brain regions with the Nucleus accumbens is implicated. Nonetheless, there is no precise information on the prevalence, causes or exact localization of both congenital and acquired musical anhedonia. However, the frequent involvement of temporo-parietal brain regions in neurological disorders such as stroke suggest the possibility of a high prevalence of this disorder, which leads to a considerable reduction in the quality of life.


Crisis ◽  
2001 ◽  
Vol 22 (2) ◽  
pp. 54-60 ◽  
Author(s):  
Lisheng Du ◽  
Gabor Faludi ◽  
Miklos Palkovits ◽  
David Bakish ◽  
Pavel D. Hrdina

Summary: Several lines of evidence indicate that abnormalities in the functioning of the central serotonergic system are involved in the pathogenesis of depressive illness and suicidal behavior. Studies have shown that the number of brain and platelet serotonin transporter binding sites are reduced in patients with depression and in suicide victims, and that the density of 5-HT2A receptors is increased in brain regions of depressed in suicide victims and in platelets of depressed suicidal patients. Genes that code for proteins, such as tryptophan hydroxylase, 5-HT transporter, and 5-HT2A receptor, involved in regulating serotonergic neurotransmission, have thus been major candidate genes for association studies of suicide and suicidal behavior. Recent studies by our group and by others have shown that genetic variations in the serotonin-system-related genes might be associated with suicidal ideation and completed suicide. We have shown that the 102 C allele in 5-HT2A receptor gene was significantly associated with suicidal ideation (χ2 = 8.5, p < .005) in depressed patients. Patients with a 102 C/C genotype had a significantly higher mean HAMD item #3 score (indication of suicidal ideation) than T/C or T/T genotype patients. Our results suggest that the 102T/C polymorphism in 5-HT2A receptor gene is primarily associated with suicidal ideation in patients with major depression and not with depression itself. We also found that the 5-HT transporter gene S/L polymorphism was significantly associated with completed suicide. The frequency of the L/L genotype in depressed suicide victims was almost double of that found in control group (48.6% vs. 26.2%). The odds ratio for the L allele was 2.1 (95% CI 1.2-3.7). The association between polymorphism in serotonergic genes and suicidality supports the hypothesis that genetic factors can modulate suicide risk by influencing serotonergic activity.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


Sign in / Sign up

Export Citation Format

Share Document