scholarly journals Performance and Uncertainty of CNR1 Net Radiometers during a One-Year Field Comparison

2008 ◽  
Vol 25 (3) ◽  
pp. 442-451 ◽  
Author(s):  
Dominik Michel ◽  
Rolf Philipona ◽  
Christian Ruckstuhl ◽  
Roland Vogt ◽  
Laurent Vuilleumier

Abstract Net radiation flux in correlation with surface energy budget, snowmelt, glacier ice balance, and forest or agricultural flux exchange investigations is measured in numerous field experiments. Instrument costs and energy consumption versus performance and uncertainty of net radiation instruments has been widely discussed. Here the authors analyze and show performance and uncertainty of two Kipp and Zonen CNR1 net radiometers, which were compared to high standard reference radiation instruments measuring individual shortwave and longwave downward and upward flux components. The intercomparison was aimed at investigating the performance of the radiometers under different climatological conditions and was made over one year at the midlatitude Baseline Surface Radiation Network (BSRN) station in Payerne, Switzerland (490 MSL). Of the two CNR1 radiometers tested, one was installed in a ventilation and heating system, whereas the other was mounted without ventilation and heating. Uncertainties of the different flux components were found to be larger for shortwave than longwave radiation and larger for downward than upward components. Using the single sensitivity coefficient provided by the manufacturer, which for CNR1 radiometers conditions using all four sensors, rather large root-mean-square differences between 2 and 14 W m−2 were measured for the individual components for hourly averages and between 2 and 12 W m−2 for daily averages. The authors then performed a field calibration, comparing each individual sensor to the reference instrument for one particular day. With the individual field calibration the uncertainty of hourly averages was reduced significantly for all components of the ventilated and heated instrument. For the unventilated CNR1 uncertainties could not be reduced significantly for all sensors. The total net radiation uncertainty of both CNR1 is rather large with up to 26% on daily averages (∼10 W m−2) for the original sensitivity coefficients and without field calibration. Only with the field calibration and for the ventilated and heated CNR1 net radiometer is an uncertainty of 10% of the daily totals of total net radiation reached, as claimed by the manufacturer.

Author(s):  
S. V. S. Sai Krishna ◽  
P. Manavalan ◽  
P. V. N. Rao

Daily net surface radiation fluxes are estimated for Indian land mass at spatial grid intervals of 0.1 degree. Two approaches are employed to obtain daily net radiation for four sample days viz., November 19, 2013, December 16, 2013, January 8, 2014 and March 20, 2014. Both the approaches compute net shortwave and net longwave fluxes, separately and sum them up to obtain net radiation. The first approach computes net shortwave radiation using daily insolation product of Kalpana VHRR and 15 days time composited broadband albedo product of Oceansat OCM2. The net outgoing longwave radiation is computed using Stefan Boltzmann equation corrected for humidity and cloudiness. In the second approach, instantaneous clear-sky net-shortwave radiation is estimated using computed clear-sky incoming shortwave radiation and the gridded MODIS 16-day time composited albedo product. The net longwave radiation is obtained by estimating outgoing and incoming longwave radiation fluxes, independently. In this, MODIS derived surface emissivity and skin temperature parameters are used for estimating outgoing longwave radiation component. In both the approaches, surface air temperature data required for estimation of net longwave radiation fluxes are extracted from India Meteorological Department’s (IMD) Automatic Weather Station (AWS) records. Estimates by the two different approaches are evaluated by comparing daily net radiation fluxes with CERES based estimates corresponding to the sample days, through statistical measures. The estimated all sky daily net radiation using the first approach compared well with CERES SYN1deg daily average net radiation with r<sup>2</sup> values of the order of 0.7 and RMS errors of the order of 8&ndash;16 w/m<sup>2</sup>.


2021 ◽  
Author(s):  
Ge Wang ◽  
Lin Han

&lt;p&gt;This study analyses the diurnal seasonal mean and the seasonal and annual variation in the radiation budget at the Ali Meteorological Bureau observation station in the northern Tibetan Plateau for 2019. The results indicate that the daily average variation in incidental shortwave and reflected radiation across all seasons in the Ali area had typical unimodal symmetry. The average daily variation in incidental shortwave radiation was in phase with reflected radiation, but the amplitude of the incidental shortwave radiation was greater than that of reflected radiation. The daily amplitude, daily average, and monthly average upwelling longwave radiation were greater than those for downwelling radiation, and the diurnal cycle of downwelling atmospheric radiation lagged behind that of upwelling longwave radiation. The daily amplitude of surface net radiation in winter in the Ali area was less than in other seasons, as expected, and the seasonal transformation had a great impact on the net radiation for this region. The net radiative energy at the surface was highest in late spring and early summer, which played a decisive role in the formation of terrestrial and atmospheric heating.&lt;/p&gt;


2016 ◽  
Vol 29 (5) ◽  
pp. 1689-1716 ◽  
Author(s):  
David P. Schneider ◽  
David B. Reusch

Abstract This study examines the biases, intermodel spread, and intermodel range of surface air temperature (SAT) across the Antarctic ice sheet and Southern Ocean in 26 structurally different climate models. Over the ocean (40°–60°S), an ensemble-mean warm bias peaks in late austral summer concurrently with the peak in the intermodel range of SAT. This warm bias lags a spring–summer positive bias in net surface radiation due to weak shortwave cloud forcing and is gradually reduced during autumn and winter. For the ice sheet, inconsistencies among reanalyses and observational datasets give low confidence in the ensemble-mean bias of SAT, but a small summer warm bias is suggested in comparison with nonreanalysis SAT data. The ensemble mean hides a large intermodel range of SAT, which peaks during the summer insolation maximum. In summer on the ice sheet, the SAT intermodel spread is largely associated with the surface albedo. In winter, models universally exhibit a too-strong deficit in net surface radiation related to the downward longwave radiation, implying that the lower atmosphere is too stable. This radiation deficit is balanced by the transfer of sensible heat toward the surface (which largely explains the intermodel spread in SAT) and by a subsurface heat flux. The winter bias in downward longwave radiation is due to the longwave cloud radiative effect, which the ensemble mean underestimates by a factor of 2. The implications of these results for improving climate simulations over Antarctica and the Southern Ocean are discussed.


2001 ◽  
Vol 33 ◽  
pp. 275-279 ◽  
Author(s):  
Gerd Wendler ◽  
Anthony P. Worby

AbstractThe surface radiation budget was continuously measured in the sea-ice zone between 140° E (Terre Adélie) and 180° (McMurdo Sound) close to mid-summer, when the sea ice is disintegrating. These measurements were carried out during a cruise of the USCGC Polar Sea from Hobart, Tasmania, to McMurdo station, Antarctica, in 1998/99. Some of the findings are: the solar radiation is the major atmospheric energy source for the melting of ice. The sun was above the horizon for 24 h for most of the cruise. Due to a high amount of fractional cloudiness, the global radiation was somewhat reduced when compared to areas with lesser cloud cover Mean noon values were around 400 W m−2, while at midnight a value of 30 W m−2 was measured. Daily mean values of the net shortwave radiation varied widely, a function of the reflectivity of the surface, which is strongly dependent not only on the ice concentration, but also on the ice type (e.g. whether it is covered with snow, flooded, melting or dry). Detailed ice observations were carried out. Hourly values of the albedo varied from 6% (open water) to 84% (10/10 sea ice with a dry snow cover). The mean net longwave radiation was only modestly negative. The high amount of fractional cloud cover increased the longwave incoming radiation from the atmosphere. A mean value of −40 W m−2 was measured, which displayed only a very weak diurnal course. The sum of the short- and longwave radiation, the total radiation budget, showed the expected diurnal variation, with slightly negative values at night (for 6 h), and a mean maximum at solar noon of around 220 W m−2. A mean daily value of 98 W m−2 was calculated.


2020 ◽  
Author(s):  
Robert Weller ◽  
J. Thomas Farrar ◽  
Sebastien Bigorre ◽  
Jason Smith ◽  
James Potemra ◽  
...  

&lt;p&gt;The Upper Ocean Process Group of the Woods Hole Oceanographic Institution deploys moorings with surface buoys instrumented with incoming shortwave and longwave radiometers at locations around the world.&amp;#160; The procedures used to calibrate the radiometers in the laboratory and to assess their performance at sea are discussed.&amp;#160; Some mooring deployments are done during collaborative field experiments and are months to a year in length.&amp;#160; Three other sites are being maintained as long-term Ocean Reference Stations (ORS), with sequential one-year deployments being used to collect ongoing time series.&amp;#160; The Stratus ORS, located under the marine stratus clouds off northern Chile, has been collecting surface radiation observations since 2000.&amp;#160; The NTAS ORS in the western tropical Atlantic has collected surface radiation data since 2001; and the WHOTS ORS north of island of Oahu, Hawaii has collected surface radiation data since 2004.&amp;#160; Challenges encountered in making the surface radiation observations are discussed, and the best estimates of observational uncertainties are presented.&amp;#160; With this understanding of the accuracies of the observations, comparisons between the buoy observations and surface radiation values from models and reanalyses are shown.&amp;#160; Work underway on further improvements to the approaches taken to make surface radiation observations from moored buoy are discussed, and a suggestion for field intercomparisons with other oceanic and land-based surface radiation observing platforms is put forward.&lt;/p&gt;


2015 ◽  
Vol 7 (5) ◽  
pp. 6224-6239 ◽  
Author(s):  
Dongdong Wang ◽  
Shunlin Liang ◽  
Tao He ◽  
Yunfeng Cao ◽  
Bo Jiang

The Medium-Resolution Spectral Imager (MERSI) is one of the major payloads of China’s second-generation polar-orbiting meteorological satellite, FengYun-3 (FY-3), and it is similar to the Moderate-Resolution Imaging Spectroradiometer (MODIS). The MERSI data are suitable for mapping terrestrial, atmospheric and oceanographic variables at continental to global scales. This study presents a direct-estimation method to retrieve surface shortwave net radiation (SSNR) data from MERSI top-of-atmosphere (TOA) reflectance and cloud mask products. This study is the first attempt to use the MERSI to retrieve SSNR data. Several critical issues concerning remote sensing of SSNR were investigated, including scale effects in validating SSNR data, impacts of the MERSI calibration update on the estimation of SSNR and the dependency of the retrieval accuracy of SSNR data on view geometry. We also incorporated data from twin MODIS sensors to assess how time and the number of satellite overpasses affect the retrieval of SSNR data. Validation against one-year data over seven Surface Radiation Budget Network (SURFRAD) stations showed that the presented algorithm estimated daily SSNR at the original resolution of the MERSI with a root mean square error (RMSE) of 41.9 W/m2 and a bias of −1.6 W/m2. Aggregated to a spatial resolution of 161 km, the RMSE of MERSI retrievals can be reduced by approximately 10 W/m2. Combined with MODIS data, the RMSE of daily SSNR estimation can be further reduced to 22.2 W/m2. Compared with that of daily SSNR, estimation of monthly SSNR is less affected by the number of satellite overpasses per day. The RMSE of monthly SSNR from a single MERSI sensor is as small as 13.5 W/m2.


Author(s):  
Kalin Z. Salinas ◽  
Amanda Venta

The current study proposed to determine whether adolescent emotion regulation is predictive of the amount and type of crime committed by adolescent juvenile offenders. Despite evidence in the literature linking emotion regulation to behaviour problems and aggression across the lifespan, there is no prior longitudinal research examining the predictive role of emotion regulation on adolescent recidivism, nor data regarding how emotion regulation relates to the occurrence of specific types of crimes. Our primary hypothesis was that poor emotion regulation would positively and significantly predict re-offending among adolescents. We tested our hypothesis within a binary logistic framework utilizing the Pathways to Desistance longitudinal data. Exploratory bivariate analyses were conducted regarding emotion regulation and type of crime in the service of future hypothesis generation. Though the findings did not indicate a statistically significant relation between emotion regulation and reoffending, exploratory findings suggest that some types of crime may be more linked to emotion regulation than others. In sum, the present study aimed to examine a hypothesized relation between emotion regulation and juvenile delinquency by identifying how the individual factor of dysregulated emotion regulation may have played a role. This study’s findings did not provide evidence that emotion regulation was a significant predictor of recidivism over time but did suggest that emotion regulation is related to participation in certain types of crime one year later. Directions for future research that build upon the current study were described. Indeed, identifying emotion regulation as a predictor of adolescent crime has the potential to enhance current crime prevention efforts and clinical treatments for juvenile offenders; this is based on the large amount of treatment literature, which documents that emotion regulation is malleable through treatment and prevention programming.


1994 ◽  
Vol 8 (4) ◽  
pp. 840-848 ◽  
Author(s):  
Chester L. Foy ◽  
Susan B. Harrison ◽  
Harold L. Witt

Field experiments were conducted at two locations in Virginia to evaluate the following herbicides: alachlor, diphenamid, diuron, metolachlor, napropamide, norflurazon, oryzalin, oxyfluorfen, paraquat, pendimethalin, and simazine. One experiment involved newly-transplanted apple trees; the others, three in apple and one in peach trees, involved one-year-old trees. Treatments were applied in the spring (mid-April to early-May). Control of annual weed species was excellent with several treatments. A broader spectrum of weeds was controlled in several instances when the preemergence herbicides were used in combinations. Perennial species, particularly broadleaf species and johnsongrass, were released when annual species were suppressed by the herbicides. A rye cover crop in nontreated plots suppressed the growth of weeds. New shoot growth of newly-transplanted apple trees was increased with 3 of 20 herbicide treatments and scion circumference was increased with 11 of 20 herbicide treatments compared to the nontreated control. Growth of one-year-old apple trees was not affected. Scion circumference of one-year-old peach trees was increased with 25 of 33 herbicide treatments.


2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.


2018 ◽  
Vol 11 (6) ◽  
pp. 2139-2152 ◽  
Author(s):  
Rosa Delia García ◽  
Africa Barreto ◽  
Emilio Cuevas ◽  
Julian Gröbner ◽  
Omaira Elena García ◽  
...  

Abstract. A 7-year (2010–2016) comparison study between measured and simulated longwave downward radiation (LDR) under cloud-free conditions was performed at the Izaña Atmospheric Observatory (IZO, Spain). This analysis encompasses a total of 2062 cases distributed approximately evenly between day and night. Results show an excellent agreement between Baseline Surface Radiation Network (BSRN) measurements and simulations with libRadtran V2.0.1 and MODerate resolution atmospheric TRANsmission model (MODTRAN) V6 radiative transfer models (RTMs). Mean bias (simulated − measured) of  <  1.1 % and root mean square of the bias (RMS) of  <  1 % are within the instrumental error (2 %). These results highlight the good agreement between the two RTMs, proving to be useful tools for the quality control of LDR observations and for detecting temporal drifts in field instruments. The standard deviations of the residuals, associated with the RTM input parameters uncertainties are rather small, 0.47 and 0.49 % for libRadtran and MODTRAN, respectively, at daytime, and 0.49 to 0.51 % at night-time. For precipitable water vapor (PWV)  >  10 mm, the observed night-time difference between models and measurements is +5 W m−2 indicating a scale change of the World Infrared Standard Group of Pyrgeometers (WISG), which serves as reference for atmospheric longwave radiation measurements. Preliminary results suggest a possible impact of dust aerosol on infrared radiation during daytime that might not be correctly parametrized by the models, resulting in a slight underestimation of the modeled LDR, of about −3 W m−2, for relatively high aerosol optical depth (AOD  >  0.20).


Sign in / Sign up

Export Citation Format

Share Document