scholarly journals Accommodation Study for an Anemometer on a Martian Lander

2011 ◽  
Vol 28 (2) ◽  
pp. 210-218 ◽  
Author(s):  
Benjamin Lenoir ◽  
Donald Banfield ◽  
David A. Caughey

Abstract Measuring the wind velocity and its turbulent fluctuations near the surface of Mars is an important component of the future exploration of Mars, not only to minimize risk in landing, but also to understand some of the most important fundamental processes that dominate Mars’ behavior today. Previous missions have included instrumentation to measure 2D mean winds, but a more sophisticated instrument has been designed that allows for fast, precise 3D measurements of the wind and its turbulent properties. These richer observations raise the question of how best to place such an instrument on a future Martian lander to minimize the flow distortions imposed by the lander, and how to correct for the perturbations that cannot be avoided. To carry out this research, computational fluid dynamic simulations in three dimensions were performed using Fluent, a commercially available software. The first step was to model the conditions at the surface of Mars and, more particularly, the quantities describing the flow in the boundary layer. Using these models, simulations were conducted with two simple shapes for the lander and with eight turbulence conditions representing neutral stability flows in the Martian boundary layer. The results are believed to be generally robust for neutral stability cases because the simulations exhibited little variability as a function of the turbulence conditions. This allowed criteria to be established that would optimize the placement of an anemometer in close proximity to a Martian lander under these conditions. The optimal position that has been derived is an elevation of 55° with a minimum distance from the lander of 0.8 times the characteristic size of the lander.

2021 ◽  
pp. 073490412199344
Author(s):  
Wolfram Jahn ◽  
Frane Sazunic ◽  
Carlos Sing-Long

Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3561
Author(s):  
Antti Uusitalo ◽  
Aki Grönman

The losses of supercritical CO2 radial turbines with design power scales of about 1 MW were investigated by using computational fluid dynamic simulations. The simulation results were compared with loss predictions from enthalpy loss correlations. The aim of the study was to investigate how the expansion losses are divided between the stator and rotor as well as to compare the loss predictions obtained with the different methods for turbine designs with varying specific speeds. It was observed that a reasonably good agreement between the 1D loss correlations and computational fluid dynamics results can be obtained by using a suitable set of loss correlations. The use of different passage loss models led to high deviations in the predicted rotor losses, especially with turbine designs having the highest or lowest specific speeds. The best agreement in respect to CFD results with the average deviation of less than 10% was found when using the CETI passage loss model. In addition, the other investigated passage loss models provided relatively good agreement for some of the analyzed turbine designs, but the deviations were higher when considering the full specific speed range that was investigated. The stator loss analysis revealed that despite some differences in the predicted losses between the methods, a similar trend in the development of the losses was observed as the turbine specific speed was changed.


Fuel ◽  
2009 ◽  
Vol 88 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Efim Korytnyi ◽  
Roman Saveliev ◽  
Miron Perelman ◽  
Boris Chudnovsky ◽  
Ezra Bar-Ziv

2021 ◽  
Vol 13 (15) ◽  
pp. 8310
Author(s):  
Hicham Fatnassi ◽  
Thierry Boulard ◽  
Christine Poncet ◽  
Nikolaos Katsoulas ◽  
Thomas Bartzanas ◽  
...  

This work aims at using the Computational Fluid Dynamic (CFD) approach to study the distributed microclimate in the leaf boundary layer of greenhouse crops. Understanding the interactions in this microclimate of this natural habitat of plant pests (i.e., boundary layer of leaves), is a prerequisite for their control through targeted climate management for sustainable greenhouse production. The temperature and humidity simulations, inside the greenhouse, were performed using CFD code which has been adapted to simulate the plant activity within each mesh in the crop canopy. The air temperature and air humidity profiles within the boundary layer of leaves were deduced from the local surrounding climate parameters, based on an analytical approach, encapsulated in a Used Defined Function (UDF), and dynamically linked to the CFD solver, a work that forms an innovative and original task. Thus, this model represents a new approach to investigate the microclimate in the boundary layer of leaves under greenhouses, which resolves the issue of the inaccessibility of this area by the conventionnel measurement tools. The findings clearly showed that (i) contrarily to what might be expected, the microclimate parameters within the boundary layer of leaves are different from the surrounding climate in the greenhouse. This is particularly visible during photoperiods when the plant’s transpiration activity is at its maximum and that (ii) the climatic parameters in the leaf boundary layer are more coupled with leaf surfaces than with those of greenhouse air. These results can help developing localized intervention strategies on the microclimate within boundary layer of plant leaves, leading to improved and sustainable pest control management. The developed climatic strategies will make it possible to optimize resources use efficiency.


2017 ◽  
Vol 118 (5) ◽  
pp. 2770-2788 ◽  
Author(s):  
David M. Coppola ◽  
Brittaney E. Ritchie ◽  
Brent A. Craven

The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459–473, 1942; Adrian ED. Br Med Bull 6: 330–332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the “sorption hypothesis” exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response “maps” to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory “fovea” hypotheses are discussed in light of these findings. NEW & NOTEWORTHY Two classical ideas concerning olfaction’s receptor-surface two-dimensional organization—the sorption and olfactory fovea hypotheses—were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.


2009 ◽  
Vol 13 (3) ◽  
pp. 59-67 ◽  
Author(s):  
Enrico Mollica ◽  
Eugenio Giacomazzi ◽  
Marco di

In this article a combustor burning hydrogen and air in mild regime is numerically studied by means of computational fluid dynamic simulations. All the numerical results show a good agreement with experimental data. It is seen that the flow configuration is characterized by strong exhaust gas recirculation with high air preheating temperature. As a consequence, the reaction zone is found to be characteristically broad and the temperature and concentrations fields are sufficiently homogeneous and uniform, leading to a strong abatement of nitric oxide emissions. It is also observed that the reduction of thermal gradients is achieved mainly through the extension of combustion in the whole volume of the combustion chamber, so that a flame front no longer exists ('flameless oxidation'). The effect of preheating, further dilution provided by inner recirculation and of radiation model for the present hydrogen/air mild burner are analyzed.


2019 ◽  
Vol 148 (1) ◽  
pp. 259-287
Author(s):  
R. M. Samelson ◽  
L. W. O’Neill ◽  
D. B. Chelton ◽  
E. D. Skyllingstad ◽  
P. L. Barbour ◽  
...  

Abstract The influence of mesoscale sea surface temperature (SST) variations on wind stress and boundary layer winds is examined from coupled ocean–atmosphere numerical simulations and satellite observations of the northern California Current System. Model coupling coefficients relating the divergence and curl of wind stress and wind to downwind and crosswind SST gradients are generally smaller than observed values and vary by a factor of 2 depending on planetary boundary layer (PBL) scheme, with values larger for smoothed fields on the 0.25° observational grid than for unsmoothed fields on the 12-km model grid. Divergence coefficients are larger than curl coefficients on the 0.25° grid but not on the model grid, consistent with stronger scale dependence for the divergence response than for curl in a spatial cross-spectral analysis. Coupling coefficients for 10-m equivalent neutral stability winds are 30%–50% larger than those for 10-m wind, implying a correlated effect of surface-layer stability variations. Crosswind surface air temperature and SST gradients are more strongly coupled than downwind gradients, while the opposite is true for downwind and crosswind heat flux and SST gradients. Midlevel boundary layer wind coupling coefficients show a reversed response relative to the surface that is predicted by an analytical model; a predicted second reversal with height is not seen in the simulations. The relative values of coupling coefficients are consistent with previous results for the same PBL schemes in the Agulhas Return Current region, but their magnitudes are smaller, likely because of the effect of mean wind on perturbation heat fluxes.


Sign in / Sign up

Export Citation Format

Share Document