Linking submesoscale fronts and air-sea heat fluxes in the Southern Ocean: Results from the first Saildrone circumnavigation of Antarctica

Author(s):  
Hanna S. Rosenthal ◽  
Louise C. Biddle ◽  
Sebastiaan Swart ◽  
Sarah T. Gille ◽  
Matthew R. Mazloff

<p>The role of the Southern Ocean in the global heat and carbon cycle is fundamental towards our climate, but observational data to quantify air-sea fluxes, such as surface  heat  fluxes, are  still  scarce. In  order  to  investigate  the  effects  of  fine- scale oceanic fronts (0.1 km–10 km) on air-sea fluxes in the Southern Ocean, high-resolution  hydrographic  and  meteorological  data  collected  by  three  un-crewed surface vehicles (Saildrones) during their first Circumnavigation of Antarctica in 2019 was assessed. Comparisons of key variables from the in situ Saildrones datasets with those from ERA5 and a stationary mooring show good  agreement.  Temperature-driven density fronts were detected in the Saildrone data and their impact on the turbulent heat flux was quantified during steady atmospheric conditions.  Over 2000 surface ocean temperature dominated density fronts were detected at length-scales (i.e.  front width) ranging from sub-kilometer to mesoscale (order of 0.1 km–100 km). <br>Temperature-driven density fronts with a length scale (as seen from the Saildrones perspective ) smaller than 1 km contributed 75% and 51% of the sensible and latent heat flux changes, respectively. The direct link between the fronts and the impact on the heat fluxes decreases sharply  when the front length increases. This suggests that smaller (submesoscale) fronts have a larger impact on heat flux variability than larger (balanced) fronts . The parametrization of  these  fine-scale ocean-atmospheric processes  in  global climate  models  could  lead to more accurate  representations  of  the  heat  flux  variability both at local and global scale.</p>

2019 ◽  
Vol 32 (8) ◽  
pp. 2397-2421 ◽  
Author(s):  
R. Justin Small ◽  
Frank O. Bryan ◽  
Stuart P. Bishop ◽  
Robert A. Tomas

Abstract A traditional view is that the ocean outside of the tropics responds passively to atmosphere forcing, which implies that air–sea heat fluxes are mainly driven by atmosphere variability. This paper tests this viewpoint using state-of-the-art air–sea turbulent heat flux observational analyses and a climate model run at different resolutions. It is found that in midlatitude ocean frontal zones the variability of air–sea heat fluxes is not predominantly driven by the atmosphere variations but instead is forced by sea surface temperature (SST) variations arising from intrinsic oceanic variability. Meanwhile in most of the tropics and subtropics wind is the dominant driver of heat flux variability, and atmosphere humidity is mainly important in higher latitudes. The predominance of ocean forcing of heat fluxes found in frontal regions occurs on scales of around 700 km or less. Spatially smoothing the data to larger scales results in the traditional atmosphere-driving case, while filtering to retain only small scales of 5° or less leads to ocean forcing of heat fluxes over most of the globe. All observational analyses examined (1° OAFlux; 0.25° J-OFURO3; 0.25° SeaFlux) show this general behavior. A standard resolution (1°) climate model fails to reproduce the midlatitude, small-scale ocean forcing of heat flux: refining the ocean grid to resolve eddies (0.1°) gives a more realistic representation of ocean forcing but the variability of both SST and of heat flux is too high compared to observational analyses.


2011 ◽  
Vol 24 (24) ◽  
pp. 6283-6306 ◽  
Author(s):  
Ivana Cerovečki ◽  
Lynne D. Talley ◽  
Matthew R. Mazloff

Abstract The authors have intercompared the following six surface buoyancy flux estimates, averaged over the years 2005–07: two reanalyses [the recent ECMWF reanalysis (ERA-Interim; hereafter ERA), and the National Centers for Environmental Prediction (NCEP)–NCAR reanalysis 1 (hereafter NCEP1)], two recent flux products developed as an improvement of NCEP1 [the flux product by Large and Yeager and the Southern Ocean State Estimate (SOSE)], and two ad hoc air–sea flux estimates that are obtained by combining the NCEP1 or ERA net radiative fluxes with turbulent flux estimates using the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk formulas with NCEP1 or ERA input variables. The accuracy of SOSE adjustments of NCEP1 atmospheric fields (which SOSE uses as an initial guess and a constraint) was assessed by verification that SOSE reduces the biases in the NCEP1 fluxes as diagnosed by the Working Group on Air–Sea Fluxes (Taylor), suggesting that oceanic observations may be a valuable constraint to improve atmospheric variables. Compared with NCEP1, both SOSE and Large and Yeager increase the net ocean heat loss in high latitudes, decrease ocean heat loss in the subtropical Indian Ocean, decrease net evaporation in the subtropics, and decrease net precipitation in polar latitudes. The large-scale pattern of SOSE and Large and Yeager turbulent heat flux adjustment is similar, but the magnitude of SOSE adjustments is significantly larger. Their radiative heat flux adjustments patterns differ. Turbulent heat fluxes determined by combining COARE bulk formulas with NCEP1 or ERA should not be combined with unmodified NCEP1 or ERA radiative fluxes as the net ocean heat gain poleward of 25°S becomes unrealistically large. The other surface flux products (i.e., NCEP1, ERA, Large and Yeager, and SOSE) balance more closely. Overall, the statistical estimates of the differences between the various air–sea heat flux products tend to be largest in regions with strong ocean mesoscale activity such as the Antarctic Circumpolar Current and the western boundary currents.


Author(s):  
Xiangzhou Song

AbstractUsing buoy observations from 2004 to 2010 and newly released atmospheric reanalysis and satellite altimetry-derived geostrophic currents from 1993 to 2017, the quantitative contribution of daily mean surface currents to air-sea turbulent heat flux and wind stress uncertainties in the Gulf Stream (GS) region is investigated based on bulk formulas. At four buoy stations, the daily mean latent (sensible) heat flux difference between the estimates with and without surface currents ranges from -18 (-4) to 20 (4) Wm-2, while the daily mean wind stress difference ranges from -0.04 to 0.02 Nm-2. The positive values indicate higher estimates with opposite directions between surface currents and absolute winds. The transition between positive and negative differences is significantly associated with synoptic-scale weather variations. The uncertainties based on buoy observations are approximately 7% and 3% for wind stress and turbulent heat fluxes, respectively. The new reanalysis and satellite geostrophic currents confirm the uncertainties identified by buoy observations with acceptable discrepancies and provide a spatial view of the uncertainty fields. The mean geostrophic currents are aligned with the surface wind along the GS; therefore, the turbulent heat fluxes and wind stress will be ‘underestimated’ with surface currents included. However, on both sides of the GS, the surface flow can be upwind due to possible mechanisms of eddy-mean flow interactions and recirculations, resulting in higher turbulent heat flux estimations. The wind stress and turbulent heat flux uncertainties experience significant seasonal variations and show long-term trends.


2021 ◽  
Author(s):  
Tong Lee ◽  
Chelle Centemann ◽  
Carol Anne Clayson ◽  
Mark Bourassa ◽  
Shannon Brown ◽  
...  

<p>Air-sea turbulent heat fluxes and their spatial gradients are important to the ocean, climate, weather, and their interactions. Satellite-based estimation of air-sea latent and sensible fluxes, providing broad coverage, require measurements of sea surface temperature, ocean-surface wind speed, and air temperature and humidity above sea surface. Because no single satellite has been able to provide simultaneous measurements of these input variables, they typically come from various satellites with different spatial resolutions and sampling times that can be offset by hours. These factors introduce errors in the estimated heat fluxes and their gradients that are not well documented. As a model-based assessment of these errors, we performed a simulation using a Weather Research and Forecasting (WRF) model forced by high-resolution blended satellite SST for the Gulf Stream extension region with a 3-km resolution and with 30-minute output. Latent and sensible heat fluxes were first computed from input variables with the original model resolutions and at coincident times. We then computed the heat fluxes by (1) decimating the input variables to various resolutions from 12.5 to 50 km, and (2) offsetting the “sampling” times of some input variables from others by 3 hours. The resultant estimations of heat fluxes and their gradients from (1) and (2) were compared with the counterparts without reducing resolution and without temporal offset of the input variables. The results show that reducing input-variable resolutions from 12.5 to 50 km weakened the magnitudes of the time-mean and instantaneous heat fluxes and their gradients substantially, for example, by a factor of two for the time-mean gradients. The temporal offset of input variables substantially impacted the instantaneous fluxes and their gradients, although not their time-mean values. The implications of these effects on scientific and operational applications of heat flux products will be discussed. Finally, we highlight a mission concept for providing simultaneous, high-resolution measurements of boundary-layer variables from a single satellite to improve air-sea turbulent heat flux estimation.</p>


1999 ◽  
Vol 121 (1) ◽  
pp. 190-194 ◽  
Author(s):  
A. G. L. Holloway ◽  
S. A. Ebrahimi-Sabet

Turbulent heat fluxes were measured far downstream of a fine heating wire stretched spanwise across a curved, uniform shear flow. The turbulence was approximately homogeneous and the overheat small enough to be passive. Strong destabilizing and stabilizing curvature effects were produced by directing the shear toward the center of curvature and away from the center of curvature, respectively. The dimensionless turbulent shear stress was strongly affected by the flow curvature, but the dimensionless components of the turbulent heat flux were found to be relatively insensitive.


2015 ◽  
Vol 16 (6) ◽  
pp. 2677-2694 ◽  
Author(s):  
Donghai Zheng ◽  
Rogier van der Velde ◽  
Zhongbo Su ◽  
Xin Wang ◽  
Jun Wen ◽  
...  

Abstract This is the second part of a study on the assessment of the Noah land surface model (LSM) in simulating surface water and energy budgets in the high-elevation source region of the Yellow River. Here, there is a focus on turbulent heat fluxes and heat transport through the soil column during the monsoon season, whereas the first part of this study deals with the soil water flow. Four augmentations are studied for mitigating the overestimation of turbulent heat flux and underestimation of soil temperature measurements: 1) the muting effect of vegetation on the thermal heat conductivity is removed from the transport of heat from the first to the second soil layer, 2) the exponential decay factor imposed on is calculated using the ratio of the leaf area index (LAI) over the green vegetation fraction (GVF), 3) Zilitinkevich’s empirical coefficient for turbulent heat transport is computed as a function of the momentum roughness length , and 4) the impact of organic matter is considered in the parameterization of the thermal heat properties. Although usage of organic matter for calculating improves the correspondence between the estimates and laboratory measurements of heat conductivities, it is shown to have a relatively small impact on the Noah LSM performance even for large organic matter contents. In contrast, the removal of the muting effect of vegetation on and the parameterization of greatly enhances the soil temperature profile simulations, whereas turbulent heat flux and surface temperature computations mostly benefit from the modified formulation. Further, the nighttime surface temperature overestimation is resolved from a coupled land–atmosphere perspective.


Author(s):  
Michael Straußwald ◽  
Karin Schmid ◽  
Hagen Müller ◽  
Michael Pfitzner

Fundamental knowledge on the flow dynamics and in particular the turbulent heat flux in film cooling flows is essential for the future design process of efficient cooling geometries. Thermographic PIV has been used to measure temperature and velocity fields in flows emanating from cylindrical effusion holes simultaneously. The measurements were carried out in a closed-loop, heated wind tunnel facility at a repetition rate of 6 kHz. Due to the high frame rate of the measurements, the unsteady flow dynamics could be resolved. For a density ratio of DR = 1.6 and a momentum ratio of I = 8, the jet ejected from the cylindrical effusion hole lifts off the surface. From the instantaneous measurements it could be observed that pockets of hot air are entrained into the coolant forcing the relatively fast cooling air to dodge the slow main flow air. These shear layer fluctuations result in turbulent heat fluxes that do not follow the gradient diffusion hypothesis which is often used in RANS models. In addition to these experimental investigations, numerical results from RANS simulations with the k-ω-SST turbulence model are presented that were carried out as basis for future investigations on turbulent heat flux modeling.


2018 ◽  
Vol 10 (12) ◽  
pp. 1994 ◽  
Author(s):  
Xinlei He ◽  
Tongren Xu ◽  
Sayed Bateni ◽  
Christopher Neale ◽  
Thomas Auligne ◽  
...  

A number of studies have estimated turbulent heat fluxes by assimilating sequences of land surface temperature (LST) observations into the strong constraint-variational data assimilation (SC-VDA) approaches. The SC-VDA approaches do not account for the structural model errors and uncertainties in the micrometeorological variables. In contrast to the SC-VDA approaches, the WC-VDA approach (the so-called weak constraint-VDA) accounts for the effects of structural and model errors by adding a model error term. In this study, the WC-VDA approach is tested at six study sites with different climatic and vegetative conditions. Its performance is also compared with that of SC-VDA at the six study sites. The results show that the WC-VDA produces 10.16% and 10.15% lower root mean square errors (RMSEs) for sensible and latent heat flux estimates compared with the SC-VDA approach. The model error term can capture errors in the turbulent heat flux estimates due to errors in LST and micrometeorological measurements, as well as structural model errors, and does not allow those errors to adversely affect the turbulent heat flux estimates. The findings also indicate that the estimated model error term varies reasonably well, so as to capture the misfit between predicted and observed net radiation in different hydrological and vegetative conditions. Finally, synthetically generated positive (negative) noises are added to the hydrological input variables (e.g., LST, air temperature, air humidity, incoming solar radiation, and wind speed) to examine whether the WC-VDA approach can capture those errors. It was found that the WC-VDA approach accounts for the errors in the input data and reduces their effect on the turbulent heat flux estimates.


Sign in / Sign up

Export Citation Format

Share Document