Orographic Precipitation in the Tropics: The Dominica Experiment

2012 ◽  
Vol 93 (10) ◽  
pp. 1567-1579 ◽  
Author(s):  
Ronald B. Smith ◽  
Justin R. Minder ◽  
Alison D. Nugent ◽  
Trude Storelvmo ◽  
Daniel J. Kirshbaum ◽  
...  

The Dominica Experiment (DOMEX) took place in the eastern Caribbean from 4 April to 10 May 2011 with 21 research flights of the Wyoming King Air and several other observing systems. The goal was an improved understanding of the physics of convective orographic precipitation in the tropics. Two types of convection were found. During a period of weak trade winds, diurnal thermal convection was seen over Dominica. This convection caused little precipitation but carried aloft air with island-derived aerosol and depleted CO2. During periods of strong trades, mechanically forced convection over the windward slopes brought heavy rain to the high terrain. This convection was “seeded” by trade-wind cumuli or neutrally buoyant cool wet patches of air. In this mechanically forced convection, air parcels did not touch the island surface to gain buoyancy so no island-derived tracers were lofted. With fewer aerosols, the mean cloud droplet diameter increased from 15 to 25 μm. Plunging airflow and a wake were found in the lee of Dominica. The DOMEX dataset will advance our understanding and test our theories of cumulus triggering and aerosol influence on precipitation.

2013 ◽  
Vol 6 (2) ◽  
pp. 3249-3277 ◽  
Author(s):  
A. Réchou ◽  
M. Plu ◽  
B. Campistron ◽  
R. Decoupes

Abstract. La Réunion is a volcanic island in a tropical zone, which soil undergoes intense erosion. The possible contribution of rainfall to erosion is analyzed and quantified using one year of UHF radar profiler data located at sea level. Measurements of reflectivity, vertical and horizontal wind allow, with suitable assumptions, to determine raindrop vertical and horizontal energy fluxes, which are both essential parameters for erosion. After calibration of radar rain rates, one-year statistics between May 2009 to April 2010 allow to identify differences in rain vertical profiles depending on the season. During the cool dry season, the mean rain rate is less than 2.5 mm h−1 as high as 1.25 km and it decreases at higher altitudes due to the trade winds inversion. During the warm moist season, the mean rain rate is nearly uniform from ground up to 4 km, around 5 mm h−1. The dynamical and microphysical properties of rainfall events are investigated on three cases that are representative of meteorological events in La Réunion: summer deep convection, a cold front and a winter depression embedded in trade winds. For intense rainfall events, the rain rate deduced from the gamma function is in agreement with the rain rate deduced from the mere Marshall Palmer exponential relationship. For less intense events, the gamma function is necessary to represent rain distribution. The deep-convection event is associated to strong reflectivity reaching as high as 10 km, and strong negative vertical velocity. Wind shear is responsible for a deficiency of radar rain detection at the lower levels. During a cold front event, strong reflectivities reach the trade wind inversion (around 4 km high). The trade wind depression generates moderate rain only as high as 2 km. For all the altitudes, the horizontal kinetic energy fluxes are one order of magnitude stronger that than the vertical kinetic energy fluxes. A simple relationship between the reflectivity factor and vertical kinetic energy fluxes is found for each case study.


1949 ◽  
Vol 30 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Robert D. Fletcher

A meteorological analysis is made of the general rainstorm of June 9–12, 1945, which produced substantial streamflow measurements over the Rio Tuy drainage basin of Venezuela. In this storm it appears that the intertropical convergence zone (ITC), in combination with the orography of the basin, was the weather model responsible for the rain. There is shown to be a high correlation (a coefficient of 0.73) between the mean-annual-rainfall pattern and that of the June 9–12 storm. The same correlation coefficient is found between the mean-annual pattern and that of another storm which occurred between June 28 and July 2, 1945. It is concluded that most general rainstorms over the Rio Tuy Basin occur when the ITC, oriented such that the trade winds are blowing almost directly from the east, lies just south of the basin; that the isohyetal patterns which result are very much alike; and that the magnitude of the rainfall varies with the strength of the trade-wind current flowing over the basin.


2009 ◽  
Vol 66 (6) ◽  
pp. 1698-1716 ◽  
Author(s):  
R. B. Smith ◽  
P. Schafer ◽  
D. J. Kirshbaum ◽  
E. Regina

Abstract The “natural laboratory” of mountainous Dominica (15°N) in the trade wind belt is used to study the physics of tropical orographic precipitation in its purest form, unforced by weather disturbances or by the diurnal cycle of solar heating. A cross-island line of rain gauges and 5-min radar scans from Guadeloupe reveal a large annual precipitation at high elevation (7 m yr−1) and a large orographic enhancement factor (2 to 8) caused primarily by repetitive convective triggering over the windward slope. The triggering is caused by terrain-forced lifting of the conditionally unstable trade wind cloud layer. Ambient humidity fluctuations associated with open-ocean convection may play a key role. The convection transports moisture upward and causes frequent brief showers on the hilltops. The drying ratio of the full air column from precipitation is less than 1% whereas the surface air dries by about 17% from the east coast to the mountain top. On the lee side, a plunging trade wind inversion and reduced instability destroys convective clouds and creates an oceanic rain shadow.


Author(s):  
Lu Yang ◽  
Qun Zheng ◽  
Aqiang Lin

Turbofan engine compressor is most severely threatened by the entry of liquid water during flight descent. This study aims to deeply understand the fluctuations of compressor performance parameters caused by water ingestion through frequency spectrum analysis. The water content and droplet diameter distribution are determined based on the real heavy rain environment. Results reveal that most of the droplets actually entering the core compressor have a particle size of less than 100 μm. In addition, the formation and motion of water film plays a critical role in affecting the fluctuation characteristics. Water ingestion deteriorates the compression performance and aggravates the unsteady fluctuations of the fan. However, the performance of the core compressor is less affected by water ingestion, but their fluctuations are still exacerbated. For some important parameters, such as inlet mass flow rate, total pressure ratio, total temperature ratio, compression work and efficiency, their main frequency of fluctuation are switched from the original blade passing frequency to the rotor passing frequency, and their amplitudes are correspondingly amplified to varying degrees. These phenomena can be observed in both the fluctuations of the fan and core compressor. Moreover, the operating point of them will be in the long-period and large-amplitude fluctuations, which leads them experiences the non-optimal state for a long time and threatens their operating stability.


2016 ◽  
Vol 144 (2) ◽  
pp. 681-701 ◽  
Author(s):  
Virendra P. Ghate ◽  
Mark A. Miller ◽  
Ping Zhu

Abstract Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.


2018 ◽  
Vol 75 (10) ◽  
pp. 3365-3379 ◽  
Author(s):  
Gustavo C. Abade ◽  
Wojciech W. Grabowski ◽  
Hanna Pawlowska

This paper discusses the effects of cloud turbulence, turbulent entrainment, and entrained cloud condensation nuclei (CCN) activation on the evolution of the cloud droplet size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events modeled as a random process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet activation and growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate, CCN concentration, and the mean fraction of environmental air entrained in an event are all specified as independent external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. These are either unactivated CCN or cloud droplets that grow from activated CCN. The model accounts for the addition of environmental CCN into the cloud by entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using the classical linear relaxation to the mean model. We show that turbulence plays an important role in aiding entrained CCN to activate, and thus broadening the droplet size distribution. These findings are consistent with previous large-eddy simulations (LESs) that consider the impact of variable droplet growth histories on the droplet size spectra in small cumuli. The scheme developed in this work is ready to be used as a stochastic subgrid-scale scheme in LESs of natural clouds.


1992 ◽  
Vol 236 ◽  
pp. 513-533 ◽  
Author(s):  
Robert H. Davis ◽  
N. A. Hill

The motion of a heavy sphere sedimenting through a dilute background suspension of neutrally buoyant spheres is analysed for small Reynolds number and large Péclet number. For this particular problem, it is possible not only to calculate the mean velocity of the heavy particle, but also the variance of the velocity and the coefficient of hydrodynamic diffusivity. Pairwise, hydrodynamic interactions between the heavy sphere and the background sphere are considered exactly using volume integrals and a trajectory analysis. Explicit formulae are given for the two limiting cases when the radius of the heavy sphere is much greater and much less than that of the background spheres, and numerical results are given for moderate size ratios. The mean velocity is relatively insensitive to the ratio of the radius of the background spheres to that of the heavy sphere, unless this ratio is very large, whereas the hydrodynamic diffusivity increases rapidly as the radius ratio is increased. The predictions are in reasonable agreement with the results of falling-ball rheometry experiments.


2021 ◽  
Author(s):  
Leonie Villiger ◽  
Heini Wernli ◽  
Maxi Boettcher ◽  
Martin Hagen ◽  
Franziska Aemisegger

Abstract. Shallow clouds in the trade-wind region over the North Atlantic contribute substantially to the global radiative budget. In the vicinity of the Caribbean island Barbados, they appear in different mesoscale organisation patterns with distinct net cloud radiative effects (CRE). Cloud formation processes in this region are typically controlled by the prevailing large-scale subsidence. However, occasionally weather systems from remote origin cause significant disturbances. This study investigates the complex cloud-circulation interactions during the field campaign EUREC4A (Elucidate the Couplings Between Clouds, Convection and Circulation) from 16 January to 20 February 2020, using a combination of Eulerian and Lagrangian diagnostics. Based on observations and ERA5 reanalyses, we identify the relevant processes and characterise the formation pathways of two moist anomalies above the Barbados Cloud Observatory (BCO), one in the lower (~1000–650 hPa) and one in the middle troposphere (~650–300 hPa). These moist anomalies are associated with strongly negative CRE values and with contrasting long-range transport processes from the extratropics and the tropics, respectively. The low-level moist anomaly is characterised by an unusually thick cloud layer, high precipitation totals and a strongly negative CRE. Its formation is connected to an “extratropical dry intrusion” (EDI) that interacts with a trailing cold front. A quasi-climatological (2010–2020) analysis reveals that EDIs lead to different conditions at the BCO depending on how they interact with the associated cold front. Based on this climatology, we discuss the relevance of the strong large-scale forcing by EDIs for the low-cloud patterns near the BCO and the related CRE. The second case study about the mid-tropospheric moist anomaly is associated with an extended and persistent mixed-phase shelf cloud and the lowest daily CRE value observed during the campaign. Its formation is linked to “tropical mid-level detrainment” (TMD), which refers to detrainment from tropical deep convection near the melting layer. The quasi-climatological analysis shows that TMDs consistently lead to mid-tropospheric moist anomalies over the BCO and that the detrainment height controls the magnitude of the anomaly. However, no systematic relationship was found between the amplitude of this mid-tropospheric moist anomaly and the CRE at the BCO. Overall, this study reveals the important impact of the long-range transport, driven by dynamical processes either in the extratropics or the tropics, on the variability of the vertical structure of moisture and clouds, and on the resulting CRE in the North Atlantic winter trades.


2005 ◽  
Vol 18 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka

Abstract Earlier analyses of the annual cycle of the axial angular momentum (AAM) are extended to include mass flows and vertical transports as observed, and to establish angular momentum budgets for various control volumes, using the European Centre for Medium-Range Forecasts (ECMWF) Re-Analyses (ERA) for the years 1979–92, transformed to height coordinates. In particular, the role of the torques is examined. The annual cycle of the zonally averaged angular momentum is large in the latitude belt 20° ⩽ |ϕ| ⩽ 45°, with little attenuation in the vertical up to a height of ∼12 km. The oscillation of the mass term (AAM due to the earth’s rotation) dominates in the lower troposphere, but that of the wind term (relative AAM) is more important elsewhere. The cycle of the friction torque as related to the trade winds prevails in the Tropics. Mountain torque and friction torque are equally important in the extratropical latitudes of the Northern Hemisphere. The annual and the semiannual cycle of the global angular momentum are in good balance with the global mountain and friction torques. The addition of the global gravity wave torque destroys this agreement. The transports must be adjusted if budgets of domains of less than global extent are to be considered. Both a streamfunction, representing the nondivergent part of the fluxes, and a flux potential, describing the divergences/convergences, are determined. The streamfunction pattern mainly reflects the seasonal shift of the Hadley cell. The flux potential links the annual oscillations of the angular momentum with the torques. It is concluded that the interaction of the torques with the angular momentum is restricted to the lower troposphere, in particular, in the Tropics. The range of influence is deeper in the Northern Hemisphere than in the Southern Hemisphere, presumably because of the mountains. The angular momentum cycle in the upper troposphere and stratosphere is not affected by the torques and reflects interhemispheric flux patterns. Budgets for the polar as well as for the midlatitude domains show that fluxes in the stratosphere are important.


2016 ◽  
Vol 29 (8) ◽  
pp. 2889-2905 ◽  
Author(s):  
Honghai Zhang ◽  
Amy Clement ◽  
Brian Medeiros

Abstract The meridional mode provides a source of predictability for the tropical climate variability and change on seasonal and longer time scales by transporting extratropical climate signals into the tropics. Previous research shows that the tropical imprint of the meridional mode is constrained by the interhemispheric asymmetry of the tropical mean climate state. In this study the constraint of the zonal asymmetry is investigated in an AGCM thermodynamically coupled with an aquaplanet slab ocean model. The strategy is to modify the zonal asymmetry of the mean climate state and examine the response of the meridional mode. Presented here are two simulations of different zonal asymmetries in the mean state. In the zonally symmetric case, the meridional mode operates throughout the subtropics but only becomes evident after removing a dominant global-scale eastward-propagating mode. In the zonally asymmetric case, the meridional mode operates only in regions where trade winds converge onto the equator and has an enlarged spatial scale due to the modified mean climate including cold sea surface and weak trade winds. In both simulations, the tropical imprint of the meridional mode is constrained by the north–south seasonal migration of the intertropical convergence zone. These results suggest that the meridional mode does not require the zonal asymmetry of the mean state but is intrinsic to the subtropical ocean–atmosphere coupled system with its characteristics subject to the mean climate state. The implication is that the internal climate variability needs to be assessed in the context of the mean climate state.


Sign in / Sign up

Export Citation Format

Share Document