Climatology of Estimated Altimeter Error Due to Nonstandard Temperatures

Author(s):  
Thomas A. Guinn ◽  
Daniel J. Halperin ◽  
Christopher G. Herbster

AbstractGeneral-aviation (GA) controlled flight into terrain accidents often occur when a pilot is unaware their aircraft’s true altitude is lower than the altitude indicated by the pressure altimeter due to colder than standard temperatures. However, little guidance is available that quantifies the magnitude of these altimeter errors and their variation with season. In this study, the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5) data set is combined with the pressure-altitude equation to construct a 30-year monthly climatology covering much of the U.S. and Canada of D-value (i.e., true altitude minus pressure altitude) corrected for the standard atmosphere height separation between the altimeter setting and standard mean sea-level pressure. This “corrected” D-value therefore provides a useful estimate of the error between true and altimeter-indicated altitude. During winter, the mean corrected D-values reach values as low as −350 m (~ −1,200 feet) in northern, low-terrain regions for flights near a pressure altitude of 3,600 m, meaning the aircraft would be nearly 350 m lower than the altimeter indicates. Furthermore, the minimum (maximum negative) corrected D-values are nearly double their mean values for the same time period. In addition, the reanalysis-based corrected D-values are compared to estimated values calculated using a simple rule-of-thumb based solely on the air temperature at altitude and the surface elevation. The rule-of-thumb tends to under-predict the magnitude of the estimated error, in some cases by 70 m (~200 feet), and therefore gives a lower margin of safety.

2013 ◽  
Vol 76 (10) ◽  
pp. 1726-1732 ◽  
Author(s):  
JEANNE-MARIE MEMBRÉ ◽  
MICHEL LAROCHE ◽  
CATHERINE MAGRAS

In Europe, Campylobacter is the leading reported cause of bacterial foodborne infectious disease. Quantifying its ability to survive at chilled and ambient temperatures and identifying the factors involved in variation in its survival may contribute to the development of efficient risk management strategies. A data set of 307 inactivation curves collected from the literature and the ComBase database, combined with 388 experimental curves, was analyzed with a log-linear model to obtain 695 D-values (time for 1 log inactivation). An additional 146 D-values collected from the literature or ComBase were added to the data set, for a total of 841 D-values. Because data were collected from different studies, the experimental conditions were somewhat heterogeneous (e.g., type of media or strain used). The full data set was then split into 19 different study types on which a meta-analysis was performed to determine the effect of temperature (range 0 to 42°C), Campylobacter species (C. coli and C. jejuni), and media (liquid media or meat matrix) on the survival ability of Campylobacter. A mixed-effects model, in which the study type and bacterial species were considered as random effects and the media and temperature as fixed effects, was run using a Bayesian approach. Overall, the model gave satisfactory results, with a residual standard deviation of 0.345 (the model response was the log D-value, expressed in days). In addition, the survival of Campylobacter was greater at 0 than at 42°C, with a log-linear pattern; the z-value (temperature to have a 10-fold decrease of D-value) was estimated to be 26.4°C (95% interval: 23.9 to 29.4°C). Despite a significant media-species interaction term, it was established that both species were more resistant on the meat matrix than in liquid media. These results may be used to understand how Campylobacter can survive along the food chain, particularly in chilled environments, and consequently be transferred to other foodstuffs.


The Eye ◽  
2019 ◽  
Vol 21 (128) ◽  
pp. 15-19
Author(s):  
Irina Bubnova ◽  
Veronica Averich ◽  
Elena Belousova

Purpose: Evaluation of corneal biomechanical prop¬erties and their influence on IOP indices in patients with keratoconus. Material and methods. The study included 194 eyes with keratoconus (113 patients aged from 23 to 36 years old). Corneal refraction in central zone varied from 48.25 to 56.75 D, values of corneal thickness ranged from 279 to 558 μm. Patients were divided into 4 groups according to Amsler classification: I stage – 40 eyes; II stage – 78 eyes; III stage – 54 eyes and IV stage – 22 eyes. Standard ophthal¬mological examination was carried out including pneumo¬tonometry. IOP indices and values of biomechanical prop¬erties were evaluated by dynamic bidirectional pneumatic applanation and pneumatic impression. Results. Study of corneal biomechanical properties in patients with keratoconus showed a decrease of such biomechanical indices as corneal hysteresis (CH) on aver¬age to 8.42±1.12 mm Hg, corneal resistance factor (CRF) – to 7.45±0.96 mm Hg, coefficient of elasticity (CE) – 5.35± 0.87 mm Hg. Values of these indices strongly depended on the stage of keratoconus. In the whole sample, the aver¬age corneal compensated IOP (IOPcc) amounted to 15.08± 2.43 mm Hg, Goldman IOP (IOPg) was 11.61±2.37 mm Hg and pneumatic tonometry IOP (IOPp) was 10.13±2.94 mm Hg. IOPcc indices didn’t have any statistically significant differ¬ence in dependence on the stage of keratoconus (р>0.473), while in process of disease progression IOPg and IOPp indi¬ces showed statistically significant decrease of mean values. Conclusion. Progression of keratoconus led to a de¬crease in corneal biomechanical properties which deter¬mine reduction of such indices as IOPg and IOPp in contrast to IOPcc.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 207
Author(s):  
Javier Gómez-Gómez ◽  
Rafael Carmona-Cabezas ◽  
Elena Sánchez-López ◽  
Eduardo Gutiérrez de Ravé ◽  
Francisco José Jiménez-Hornero

The last decades have been successively warmer at the Earth’s surface. An increasing interest in climate variability is appearing, and many research works have investigated the main effects on different climate variables. Some of them apply complex networks approaches to explore the spatial relation between distinct grid points or stations. In this work, the authors investigate whether topological properties change over several years. To this aim, we explore the application of the horizontal visibility graph (HVG) approach which maps a time series into a complex network. Data used in this study include a 60-year period of daily mean temperature anomalies in several stations over the Iberian Peninsula (Spain). Average degree, degree distribution exponent, and global clustering coefficient were analyzed. Interestingly, results show that they agree on a lack of significant trends, unlike annual mean values of anomalies, which present a characteristic upward trend. The main conclusions obtained are that complex networks structures and nonlinear features, such as weak correlations, appear not to be affected by rising temperatures derived from global climate conditions. Furthermore, different locations present a similar behavior and the intrinsic nature of these signals seems to be well described by network parameters.


2021 ◽  
pp. 014544552110540
Author(s):  
Nihal Sen

The purpose of this study is to provide a brief introduction to effect size calculation in single-subject design studies, including a description of nonparametric and regression-based effect sizes. We then focus the rest of the tutorial on common regression-based methods used to calculate effect size in single-subject experimental studies. We start by first describing the difference between five regression-based methods (Gorsuch, White et al., Center et al., Allison and Gorman, Huitema and McKean). This is followed by an example using the five regression-based effect size methods and a demonstration how these methods can be applied using a sample data set. In this way, the question of how the values obtained from different effect size methods differ was answered. The specific regression models used in these five regression-based methods and how these models can be obtained from the SPSS program were shown. R2 values obtained from these five methods were converted to Cohen’s d value and compared in this study. The d values obtained from the same data set were estimated as 0.003, 0.357, 2.180, 3.470, and 2.108 for the Allison and Gorman, Gorsuch, White et al., Center et al., as well as for Huitema and McKean methods, respectively. A brief description of selected statistical programs available to conduct regression-based methods was given.


Radiocarbon ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 483-494 ◽  
Author(s):  
Konrad A. Hughen ◽  
Jonathan T. Overpeck ◽  
Scott J. Lehman ◽  
Michaele Kashgarian ◽  
John R. Southon ◽  
...  

Varved sediments of the tropical Cariaco Basin provide a new 14C calibration data set for the period of deglaciation (10,000 to 14,500 years before present: 10–14.5 cal ka bp). Independent evaluations of the Cariaco Basin calendar and 14C chronologies were based on the agreement of varve ages with the GISP2 ice core layer chronology for similar high-resolution paleoclimate records, in addition to 14C age agreement with terrestrial 14C dates, even during large climatic changes. These assessments indicate that the Cariaco Basin 14C reservoir age remained stable throughout the Younger Dryas and late Allerød climatic events and that the varve and 14C chronologies provide an accurate alternative to existing calibrations based on coral U/Th dates. The Cariaco Basin calibration generally agrees with coral-derived calibrations but is more continuous and resolves century-scale details of 14C change not seen in the coral records. 14C plateaus can be identified at 9.6, 11.4, and 11.7 14C ka bp, in addition to a large, sloping “plateau” during the Younger Dryas (∼10 to 11 14C ka bp). Accounting for features such as these is crucial to determining the relative timing and rates of change during abrupt global climate changes of the last deglaciation.


2016 ◽  
Vol 16 (8) ◽  
pp. 5075-5090 ◽  
Author(s):  
Robert E. Holz ◽  
Steven Platnick ◽  
Kerry Meyer ◽  
Mark Vaughan ◽  
Andrew Heidinger ◽  
...  

Abstract. Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light-scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of 2 bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single-scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ≈ 0.75 in the mid-visible spectrum, 5–15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single-habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.


2001 ◽  
Vol 7 (3) ◽  
pp. 245-250 ◽  
Author(s):  
O. Erkmen

Antimicrobial effect of 15, 30 and 60 atm CO 2 pressures was studied on Yersinia enterocolitica at 25, 35 and 45 °C. Two stages were observed in the destruction curves. The earlier stage was characterized by a slow rate of inactivation in number of Y. enterocolitica, which increased sharply at the later stage. An increase of pressure and/or temperature enhanced the antimicrobial effects of CO 2. The D values of 6.1 and 4.9 min were obtained for Y. enterocolitica at 45 °C under 15 and 30 atm CO 2 pressure, respectively, while only 1.3 min D value was found at 60 atm. A rapid and significant ( p < 0.05) reduction was obtained in the number of Y. enterocolitica at treated pressures and temperatures. Pressure, temperature, exposure time, and the suspending medium influenced the inactivation rates of Y. enterocolitica.


1970 ◽  
Vol 52 (2) ◽  
pp. 345-367 ◽  
Author(s):  
VANCE A. TUCKER ◽  
G. CHRISTIAN PARROTT

1. A live laggar falcon (Falco jugger) glided in a wind tunnel at speeds between 6.6 and 15.9 m./sec. The bird had a maximum lift to drag ratio (L/D) of 10 at a speed of 12.5 m./sec. As the falcon increased its air speed at a given glide angle, it reduced its wing span, wing area and lift coefficient. 2. A model aircraft with about the same wingspan as the falcon had a maximum L/D value of 10. 3. Published measurements of the aerodynamic characteristics of gliding birds are summarized by presenting them in a diagram showing air speed, sinking speed and L/D values. Data for a high-performance sailplane are included. The soaring birds had maximum L/D values near 10, or about one quarter that of the sailplane. The birds glided more slowly than the sailplane and had about the same sinking speed. 4. The ‘equivalent parasite area’ method used by aircraft designers to estimate parasite drag was modified for use with gliding birds, and empirical data are presented to provide a means of predicting the gliding performance of a bird in the absence of wind-tunnel tests. 5. The birds in this study had conventional values for parasite drag. Technical errors seem responsible for published claims of unusually low parasite drag values in a vulture. 6. The falcon adjusted its wing span in flight to achieve nearly the maximum possible L/D value over its range of gliding speeds. 7. The maximum terminal speed of the falcon in a vertical dive is estimated to be 100 m./sec.


2021 ◽  
Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

&lt;p&gt;This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated &amp;#8220;early instrumental data&amp;#8221;. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,&amp;#160; we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.&lt;/p&gt;


2008 ◽  
Vol 71 (8) ◽  
pp. 1604-1611 ◽  
Author(s):  
VIJAY K. JUNEJA ◽  
MENDEL FRIEDMAN

The heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of the antimicrobials carvacrol and cinnamaldehyde was tested at temperatures ranging from 55 to 62.5°C. Inoculated meat packaged in bags was completely immersed in a circulating water bath, cooked for 1 h to an internal temperature of 55, 58, 60, or 62.5°C, and then held for predetermined lengths of time ranging from 210 min at 55°C to 5 min at 62.5°C. The surviving bacteria were enumerated by spiral plating onto tryptic soy agar overlaid with sorbitol MacConkey agar. Inactivation kinetics of the pathogens deviated from first-order kinetics. D-values (time for the bacteria to decrease by 90%) in the control beef ranged from 63.90 min at 55°C to 1.79 min at 62.5°C. D-values determined by a logistic model ranged from 43.18 min (D1, the D-value of a major population of surviving cells) and 89.84 min (D2, the D-value of a minor subpopulation) at 55°C to 1.77 (D1) and 0.78 min (D2) at 62.5°C. The thermal death times suggested that to achieve a 4-D reduction, contaminated processed ground beef should be heated to an internal temperature of 60°C for at least 30.32 min. Significantly increased sensitivity to heat (P &lt; 0.05) was observed with the addition and/or increasing levels of carvacrol or cinnamaldehyde from 0.5 to 1.0%. The observed thermal death times may facilitate the design of acceptance limits at critical control points for ground beef at lower times and temperatures of heating.


Sign in / Sign up

Export Citation Format

Share Document