On the Warm Core of a Tropical Cyclone Formed near the Tropopause

2015 ◽  
Vol 72 (2) ◽  
pp. 551-571 ◽  
Author(s):  
Tomoki Ohno ◽  
Masaki Satoh

Abstract On the basis of numerical results of a three-dimensional model diagnosed using balance dynamics, a mechanism by which the upper-level warm core of tropical cyclones (TCs) forms is proposed. The numerical results reveal that an upper-level warm core develops when TCs intensify just prior to reaching the mature stage. Potential temperature budget analysis reveals that for the tendency of potential temperature, the azimuthal-mean component of advection is dominant at the upper level of the eye at the mature stage. Sawyer–Eliassen diagnosis shows that tendencies due to forced flow by diabatic heating and diffusion of tangential wind are dominant in the eye and are negatively correlated to each other. The distributions of the diabatic heating in the simulated TC are not peculiar. Therefore, it is unlikely that the heating distribution itself is the primary cause of the flow from the lower stratosphere. The analyses of forced circulations of idealized vortices show that the upper-level subsidence is enhanced in the eye when the vortex is sufficiently tall to penetrate the statically stable stratosphere. This result is deduced because the stronger inertial stability extends the response to the heating of the lower stratosphere and causes upper-level adiabatic warming. Therefore, the upper-level warm core emerges if angular momentum is transported into the lower stratosphere due to processes such as convective bursts. The present analysis suggests that TCs can be even stronger than that expected by theories in which the TC vortex is confined in the troposphere.

2019 ◽  
Vol 76 (1) ◽  
pp. 209-229 ◽  
Author(s):  
Patrick Duran ◽  
John Molinari

Abstract Upper-level static stability (N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2 evolution of TCs. These N2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.


Author(s):  
Satoki Tsujino ◽  
Kazuhisa Tsuboki ◽  
Hiroyuki Yamada ◽  
Tadayasu Ohigashi ◽  
Kosuke Ito ◽  
...  

AbstractKnowledge of the development and maintenance processes of double warm cores in tropical cyclones is important for full understanding of the dynamics of storm intensity changes. During its mature stage, Typhoon Lan (2017) had a clear double warm-core structure, which was observed by dropsondes. In this study, to investigate the intensification and maintenance of the double warm-core structure, a numerical simulation of the storm is performed with a cloud-resolving model and verified by dropsonde and satellite observations. A potential temperature budget and backward trajectories are diagnosed to examine intensification and maintenance processes in the simulated eye. The budget analysis indicates that, during the most rapidly intensifying stage, a double warm core is enhanced by axisymmetric subsidence warming in the eye. In the mature stage, upper-core warming is mostly canceled by ventilation due to vertical wind shear, but the lower core continues to warm by asymmetric advection, possibly associated with dynamical instability in the eyewall. The results raise a topic of interest: It is difficult to fully explain the axisymmetric subsidence warming process during the most rapidly intensifying stage by the dynamical response in an axisymmetric balanced vortex. The back-trajectory analysis indicates that the air mass associated with the subsidence is partly induced by inward acceleration in subgradient regions (unbalanced processes) in the eyewall.


Author(s):  
Peter M. Finocchio ◽  
Rosimar Rios-Berrios

AbstractThis study describes a set of idealized simulations in which westerly vertical wind shear increases from 3 to 15 m s−1 at different stages in the lifecycle of an intensifying tropical cyclone (TC). The TC response to increasing shear depends on the intensity and size of the TC’s tangential wind field when shear starts to increase. For a weak tropical storm, increasing shear decouples the vortex and prevents intensification. For Category 1 and stronger storms, increasing shear causes a period of weakening during which vortex tilt increases by 10–30 km before the TCs reach a near-steady Category 1–3 intensity at the end of the simulations. TCs exposed to increasing shear during or just after rapid intensification tend to weaken the most. Backward trajectories reveal a lateral ventilation pathway between 8–11 km altitude that is capable of reducing equivalent potential temperature in the inner core of these TCs by nearly 2°C. In addition, these TCs exhibit large reductions in diabatic heating inside the radius of maximum winds (RMW) and lower-entropy air parcels entering downshear updrafts from the boundary layer, which further contributes to their substantial weakening. The TCs exposed to increasing shear after rapid intensification and an expansion of the outer wind field reach the strongest near-steady intensity long after the shear increases because of strong vertical coupling that prevents the development of large vortex tilt, resistance to lateral ventilation through a deep layer of the middle troposphere, and robust diabatic heating within the RMW.


Author(s):  
Donglei Shi ◽  
Guanghua Chen

AbstractThe rapid intensification (RI) of supertyphoon Lekima (2019) is investigated from the perspective of balanced potential vorticity (PV) dynamics using a high-resolution numerical simulation. The PV budget shows that the inner-core PV anomalies (PVAs) formed during the RI mainly comprise an eyewall PV tower generated by diabatic heating, a high-PV bridge extending into the eye resulting from the PV mixing, and an upper-tropospheric high-PV core induced by the PV intrusion from stratosphere. The inversion of the total PVA at the end of the RI captures about 90% of changes in pressure and wind fields, indicating that the storm is quasi-balanced. The piecewise PV inversion further demonstrates that the eyewall and mixed PVAs induce the upper-level and midlevel warm cores in the eye region, respectively. The two warm cores cause nearly all the balanced central pressure decrease and thus dominate the RI, with the contribution of the upper warm core being twice that of the midlevel one. In contrast, the upper-tropospheric PV core induces significant warming near the tropopause and deep-layer cooling beneath, reinforcing the upper-level warm core but causing little surface pressure drop.By comparing the diabatic PV generation due to the convective burst (CB) and non-CB precipitation, we found that the non-CB precipitation accounts for a larger portion for the eyewall PVA and thus the associated upper-level warming, distinct from previous studies that primarily attributed the upper-level warm-core formation to the CB. Nevertheless, CBs act to be more efficient PV generators due to their vigorous latent heat release and are thus favorable for RI.


2020 ◽  
Vol 33 (23) ◽  
pp. 10149-10167
Author(s):  
Lan Dai ◽  
Jonathon S. Wright ◽  
Rong Fu

AbstractWe investigate the physical processes behind summer drought in North China by evaluating moisture and energy budget diagnostics and linking them to anomalous large-scale circulation patterns. Moisture budget analysis reveals that summer drought in North China was caused dynamically by reduced vertical moisture advection due to anomalous subsidence and reduced horizontal moisture advection due to anomalous northeasterly winds. Energy budget analysis shows that reduced latent heating was balanced dynamically by decreased dry static energy (DSE) divergence in the middle-to-upper troposphere. Linking these results to previous work, we suggest that summer drought in North China was predicated on co-occurrence of the positive phases of the Eurasian (EU) and Pacific–Japan (PJ) teleconnection patterns, potentially modulated by the circumglobal teleconnection (CGT). In the typical case, the negative phase of the CGT intensified the positive EU-related upper-level cyclone. Resulting upper-level cooling and positive surface feedback imposed a cold-core surface anticyclone that weakened with height. By contrast, when the positive phase of the CGT occurred in tandem with the positive EU and PJ patterns, the anticyclone had a warm core and intensified with height. The two cases were unified by strong subsidence but exhibited opposite meridional advection anomalies. In the cold-core cases, meridional moisture inflow was reduced but meridional DSE export was enhanced, further limiting precipitation while maintaining negative thermal anomalies. In the warm-core case, which only occurred once, enhanced meridional inflow of water vapor supplied moisture for sporadic precipitation while reduced meridional DSE export helped to maintain strong static stability.


2019 ◽  
Vol 76 (8) ◽  
pp. 2559-2573
Author(s):  
Hui Wang ◽  
Yuqing Wang ◽  
Jing Xu ◽  
Yihong Duan

Abstract This study examines the evolution of the warm-core structure during the secondary eyewall formation (SEF) and the subsequent eyewall replacement cycle (ERC) in a numerically simulated tropical cyclone (TC) under idealized conditions. Results show that prior to the SEF, the TC exhibited a double warm-core structure centered in the middle and upper troposphere in the eye region, and as the storm intensified with a rapid outward expansion of tangential winds, the warm core strengthened and a secondary off-center warm ring developed between 8- and 16-km heights near the outer edge of the eye. During the SEF, both the upper-level warm core and the secondary off-center warm ring rapidly strengthened. As the secondary eyewall intensified and contracted and the primary eyewall weakened and dissipated, the off-center warm ring extended inward and merged with the inner warm core to form a warm core typical of a single-eyewall TC. Results from the azimuthal-mean potential temperature budget indicate that the warming in the eye is due to subsidence and the warming above 14-km height outside the eye is largely contributed by radial warm advection in the outflow. The development of the off-center warm ring is largely due to the subsidence warming near the inner edge of the primary eyewall and in the moat area and the warming by diabatic heating in the upper part of the inner eyewall below 14-km height. Further analysis indicates that the eddy advection also played some role in the warming above 12-km height in the upper troposphere.


2013 ◽  
Vol 70 (1) ◽  
pp. 73-90 ◽  
Author(s):  
Daniel P. Stern ◽  
Fuqing Zhang

Abstract In this first part of a two-part study, the mechanisms that accomplish the warming in the eye of tropical cyclones are investigated through a potential temperature budget analysis of an idealized simulation. The spatial structure of warming varies substantially with time. During rapid intensification (RI), the warming is maximized at midlevels, and as a consequence, the perturbation temperature is always maximized in this region. At the start of RI, total advection of potential temperature is the only significant term contributing to warming the eye. However, for a substantial portion of RI, the region of most rapid warming actually undergoes mean ascent. The net advective warming is shown to be a result of eddy radial advection of potential temperature, dominated by a wavenumber-1 feature that is likely due to a dynamic instability. At a sufficient intensity, mean vertical advective warming becomes concentrated in a narrow zone just inward of the eyewall. In agreement with prior studies, this advective tendency is largely canceled by diabatic cooling. Subgrid-scale horizontal diffusion of potential temperature plays a surprisingly large role in the maintenance of the warm-core structure, and when the storm is intense, yields a negative tendency that can be of the same magnitude as advective warming.


2018 ◽  
Vol 146 (1) ◽  
pp. 119-134 ◽  
Author(s):  
Patrick Duran ◽  
John Molinari

Abstract Dropsondes with horizontal spacing as small as 4 km were released from the stratosphere in rapidly intensifying Hurricane Patricia (2015) during the Office of Naval Research Tropical Cyclone Intensity experiment. These observations provide cross sections of unprecedented resolution through the inner core of a hurricane. On 21 October, Patricia exhibited a strong tropopause inversion layer (TIL) across its entire circulation, with a maximum magnitude of 5.1 K (100 m)−1. This inversion weakened between 21 and 22 October as potential temperature θ increased by up to 16 K just below the tropopause and decreased by up to 14 K in the lower stratosphere. Between 22 and 23 October, the TIL over the eye weakened further, allowing the tropopause to rise by 1 km. Meanwhile over Patricia’s secondary eyewall, the TIL restrengthened and bulged upward by about 700 m into what was previously the lower stratosphere. These observations support many aspects of recent modeling studies, including eyewall penetration into the stratosphere during rapid intensification (RI), the existence of a narrow inflow layer near the tropopause, and the role of subsidence from the stratosphere in developing an upper-level warm core. Three mechanisms of inner-core tropopause variability are hypothesized: destabilization of the TIL through turbulent mixing, weakening of the TIL over the eye through upper-tropospheric subsidence warming, and increasing tropopause height forced by overshooting updrafts in the eyewall. None of these processes are seen as the direct cause of RI, but rather part of the RI process that includes strong increases in boundary layer moist entropy.


2020 ◽  
Vol 148 (9) ◽  
pp. 3605-3630
Author(s):  
William Miller ◽  
Da-Lin Zhang

Abstract This study uses a recently developed trajectory model to trace eyewall updrafts in a high-resolution Hurricane Wilma (2005) prediction to their roots in the maritime boundary layer (MBL) in order to better understand their thermodynamics and how they interact with the swirling winds. Out of 97 020 four-hour backward trajectories seeded from the upper troposphere, the 45% of them originating from the MBL are stratified into five subsamples binned by peak vertical velocity wMAX. Of particular interest are the thermodynamic characteristics of parcels belonging to the wMAX-Extreme subsample (i.e., those with wMAX exceeding 20 m s−1) that ascend through Wilma’s strongest convective burst (CB) cores. A vertical momentum budget computed along a selected wMAX-Extreme trajectory confirms that the parcel possesses large positive buoyancy that more than compensates for negative hydrometeor loading to yield an upper-tropospheric wMAX ~ 30 m s−1. Comparing all 1170 wMAX-Extreme trajectories with all 19 296 secondary circulation trajectories shows that the former tends to originate from the MBL where equivalent potential temperature θe and ocean surface heat and moisture fluxes are locally enhanced. The wMAX-Extreme parcels become further differentiated from the background ascent in terms of their (i) greater updraft width and smaller θe reduction while ascending into the midtroposphere, implying lower environmental entrainment rates, and (ii) less hydrometeor loading in the z = 3–5-km layer. The Lagrangian analysis herein bridges two previous studies that focused separately on the importance of high SSTs and fusion latent heat release to the development of CBs, the latter of which may facilitate upper-level warm core development through their compensating subsidence.


2013 ◽  
Vol 141 (12) ◽  
pp. 4296-4321 ◽  
Author(s):  
Thomas J. Galarneau ◽  
Christopher A. Davis ◽  
Melvyn A. Shapiro

Abstract Hurricane Sandy's landfall along the New Jersey shoreline at 2330 UTC 29 October 2012 produced a catastrophic storm surge stretching from New Jersey to Rhode Island that contributed to damage in excess of $50 billion—the sixth costliest U.S. tropical cyclone on record since 1900—and directly caused 72 fatalities. Hurricane Sandy's life cycle was marked by two upper-level trough interactions while it moved northward over the western North Atlantic on 26–29 October. During the second trough interaction on 29 October, Sandy turned northwestward and intensified as cold continental air encircled the warm core vortex and Sandy acquired characteristics of a warm seclusion. The aim of this study is to determine the dynamical processes that contributed to Sandy's secondary peak in intensity during its warm seclusion phase using high-resolution numerical simulations. The modeling results show that intensification occurred in response to shallow low-level convergence below 850 hPa that was consistent with the Sawyer–Eliassen solution for the secondary circulation that accompanied the increased baroclinicity in the radial direction. Additionally, cyclonic vertical vorticity generated by tilting of horizontal vorticity along an axis of frontogenesis northwest of Sandy was axisymmetrized. The axis of frontogenesis was anchored to the Gulf Stream in a region of near-surface differential diabatic heating. The unusual northwestward track of Sandy allowed the cyclonic vorticity over the Gulf Stream to form ahead of the main vortex and be readily axisymmetrized. The underlying dynamics driving intensification were nontropical in origin, and supported the reclassification of Sandy as extratropical prior to landfall.


Sign in / Sign up

Export Citation Format

Share Document