Numerical Simulations of Orographic Convection across Multiple Gray Zones

2020 ◽  
Vol 77 (10) ◽  
pp. 3301-3320
Author(s):  
Daniel J. Kirshbaum

AbstractIdealized simulations are used to determine the sensitivity of moist orographic convection to horizontal grid spacing Δh. In simulated mechanically (MECH) and thermally (THERM) forced convection over an isolated ridge, Δh is varied systematically over both the deep-convection (Δh ~ 10–1 km) and turbulence (Δh ~ 1 km–100 m) gray zones. To aid physical interpretation, a new parcel-based bulk entrainment/detrainment diagnosis for horizontally heterogeneous flows is developed. Within the deep-convection gray zone, the Δh sensitivity is dominated by differences in parameterized versus explicit convection; the former initiates convection too far upstream of the ridge (MECH) and too early in the diurnal heating cycle (THERM). These errors stem in part from a large underprediction of parameterized entrainment and detrainment. Within the turbulence gray zone, sensitivities to Δh arise from the representation of both subcloud- and cloud-layer turbulence. As Δh is decreased, MECH exhibits stronger cloud-layer entrainment to enhance the convective mass flux Mco, while THERM exhibits stronger detrainment to suppress Mco and delay convection initiation. The latter is reinforced by increased subcloud turbulence at smaller Δh, which leads to drying and diffusion of the central updraft responsible for initiating moist convection. Numerical convergence to a robust solution occurs only in THERM, which develops a fully turbulent flow with a resolved inertial subrange (for Δh ≤ 250 m). In MECH, by contrast, turbulent transition occurs within the orographic cloud, the details of which depend on both physical location and Δh.

2019 ◽  
Vol 147 (11) ◽  
pp. 4127-4149 ◽  
Author(s):  
Ron McTaggart-Cowan ◽  
Paul A. Vaillancourt ◽  
Ayrton Zadra ◽  
Leo Separovic ◽  
Shawn Corvec ◽  
...  

Abstract The parameterization of deep moist convection as a subgrid-scale process in numerical models of the atmosphere is required at resolutions that extend well into the convective “gray zone,” the range of grid spacings over which such convection is partially resolved. However, as model resolution approaches the gray zone, the assumptions upon which most existing convective parameterizations are based begin to break down. We focus here on one aspect of this problem that emerges as the temporal and spatial scales of the model become similar to those of deep convection itself. The common practice of static tendency application over a prescribed adjustment period leads to logical inconsistencies at resolutions approaching the gray zone, while more frequent refreshment of the convective calculations can lead to undesirable intermittent behavior. A proposed parcel-based treatment of convective initiation introduces memory into the system in a manner that is consistent with the underlying physical principles of convective triggering, thus reducing the prevalence of unrealistic gradients in convective activity in an operational model running with a 10 km grid spacing. The subsequent introduction of a framework that considers convective clouds as persistent objects, each possessing unique attributes that describe physically relevant cloud properties, appears to improve convective precipitation patterns by depicting realistic cloud memory, movement, and decay. Combined, this Lagrangian view of convection addresses one aspect of the convective gray zone problem and lays a foundation for more realistic treatments of the convective life cycle in parameterization schemes.


2016 ◽  
Vol 73 (10) ◽  
pp. 4021-4041 ◽  
Author(s):  
Davide Panosetti ◽  
Steven Böing ◽  
Linda Schlemmer ◽  
Jürg Schmidli

Abstract On summertime fair-weather days, thermally driven wind systems play an important role in determining the initiation of convection and the occurrence of localized precipitation episodes over mountainous terrain. This study compares the mechanisms of convection initiation and precipitation development within a thermally driven flow over an idealized double-ridge system in large-eddy (LESs) and convection-resolving (CRM) simulations. First, LES at a horizontal grid spacing of 200 m is employed to analyze the developing circulations and associated clouds and precipitation. Second, CRM simulations at horizontal grid length of 1 km are conducted to evaluate the performance of a kilometer-scale model in reproducing the discussed mechanisms. Mass convergence and a weaker inhibition over the two ridges flanking the valley combine with water vapor advection by upslope winds to initiate deep convection. In the CRM simulations, the spatial distribution of clouds and precipitation is generally well captured. However, if the mountains are high enough to force the thermally driven flow into an elevated mixed layer, the transition to deep convection occurs faster, precipitation is generated earlier, and surface rainfall rates are higher compared to the LES. Vertical turbulent fluxes remain largely unresolved in the CRM simulations and are underestimated by the model, leading to stronger upslope winds and increased horizontal moisture advection toward the mountain summits. The choice of the turbulence scheme and the employment of a shallow convection parameterization in the CRM simulations change the strength of the upslope winds, thereby influencing the simulated timing and intensity of convective precipitation.


Author(s):  
T. Connor Nelson ◽  
James Marquis ◽  
Adam Varble ◽  
Katja Friedrich

AbstractThe Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 hr and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km and 30 min in space and time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow-terrain interactions may yield gravity wave activity that affects CI outcome.


Author(s):  
James N. Marquis ◽  
Adam C. Varble ◽  
Paul Robinson ◽  
T. Connor. Nelson ◽  
Katja Friedrich

AbstractData from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of: i) the mesoscale and boundary layer flow, and ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms.The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3-5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1-3-km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.


Author(s):  
Adam C. Varble ◽  
Stephen W. Nesbitt ◽  
Paola Salio ◽  
Joseph C. Hardin ◽  
Nitin Bharadwaj ◽  
...  

AbstractThe Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft.A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.


2013 ◽  
Vol 70 (11) ◽  
pp. 3689-3690 ◽  
Author(s):  
David M. Schultz

Abstract The hypothesis that cumulus congestus clouds in the tropics moisten dry layers above the boundary layer and promote the formation of deep moist convection was tested by Hohenegger and Stevens. This comment asks whether their hypothesis is also true for cumulus congestus clouds and deep moist convection in the midlatitudes. This comment also requests clarification on how their expression for moisture convergence is calculated and used in their article, especially in light of previous studies showing that moisture flux convergence is a less-than-adequate diagnostic for convection initiation and that deep moist convection requires sufficient lift and instability, in addition to sufficient moisture.


Author(s):  
Christopher A. Davis

Abstract The Sierras de Córdoba (SDC) mountain range in Argentina is a hotspot of deep moist convection initiation (CI). Radar climatology indicates that 44% of daytime CI events that occur near the SDC in spring and summer seasons and that are not associated with the passage of a cold front or an outflow boundary involve a northerly LLJ, and these events tend to preferentially occur over the southeast quadrant of the main ridge of the SDC. To investigate the physical mechanisms acting to cause CI, idealized convection-permitting numerical simulations with a horizontal grid spacing of 1 km were conducted using CM1. The sounding used for initializing the model featured a strong northerly LLJ, with synoptic conditions resembling those in a previously postulated conceptual model of CI over the region, making it a canonical case study. Differential heating of the mountain caused by solar insolation in conjunction with the low-level northerly flow sets up a convergence line on the eastern slopes of the SDC. The southern portion of this line experiences significant reduction in convective inhibition, and CI occurs over the SDC southeast quadrant. Thesimulated storm soon acquires supercellular characteristics, as observed. Additional simulations with varying LLJ strength also show CI over the southeast quadrant. A simulation without background flow generated convergence over the ridgeline, with widespread CI across the entire ridgeline. A simulation with mid- and upper-tropospheric westerlies removed indicates that CI is minimally influenced by gravity waves. We conclude that the low-level jet is sufficient to focus convection initiation over the southeast quadrant of the ridge.


2021 ◽  
Author(s):  
Oliver Branch ◽  
Andreas Behrendt ◽  
Osama Alnayef ◽  
Florian Späth ◽  
Thomas Schwitalla ◽  
...  

<p>We present exciting Doppler lidar and cloud radar measurements from a high-vantage mountain observatory in the hyper-arid United Arab Emirates (UAE) - initiated as part of the UAE Research Program for Rain Enhancement Science (UAEREP). The observatory was designed to study the clear-air pre-convective environment and subsequent convective events in the arid Al Hajar Mountains, with the overarching goal of improving understanding and nowcasting of seedable orographic clouds. During summer in the Al Hajar Mountains (June to September), weather processes are often complex, with summer convection being initiated by several phenomena acting in concert, e.g., interaction between sea breeze and horizontal convective rolls. These interactions can combine to initiate sporadic convective storms and these can be intense enough to cause flash floods and erosion. Such events here are influenced by mesoscale phenomena like the low-level jet and local sea breeze, and are constrained by larger-scale synoptic conditions.</p><p>The Doppler lidar and cloud radar were employed for approximately two years at a high vantage-point to capture valley wind flows and observe convective cells. The instruments were configured to run synchronized polar (PPI) scans at 0°, 5°, and 45° elevation angles and vertical cross-section (RHI) scans at 0°, 30°, 60, 90°, 120°, and 150° azimuth angles. Using this imagery, along with local C-band radar and satellite data, we were able to identify and analyze several convective cases. To illustrate our results, we have selected two cases under unstable conditions - the 5 and 6 September 2018. In both cases, we observed areas of low-level convergence/divergence, particularly associated with wind flow around a peak 2 km to the south-west of the observatory. The extension of these deformations are visible in the atmosphere to a height of 3 km above sea level. Subsequently, we observed convective cells developing at those approximate locations – apparently initiated because of these phenomena. The cloud radar images provided detailed observations of cloud structure, evolution, and precipitation. In both convective cases, pre-convective signatures were apparent before CI, in the form of convergence, wind shear structures, and updrafts.</p><p>These results have demonstrated the value of synergetic observations for understanding orographic convection initiation, improvement of forecast models, and cloud seeding guidance. The manuscript based on these results is now the subject of a peer review (Branch et al., 2021).</p><p> </p><p>Branch, O., Behrendt, Andreas Alnayef, O., Späth, F., Schwitalla, Thomas, Temimi, M., Weston, M., Farrah, S., Al Yazeedi, O., Tampi, S., Waal, K. de and Wulfmeyer, V.: The new Mountain Observatory of the Project “Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL)” in the United Arab Emirates: First results on Convection Initiation, J. Geophys. Res.  Atmos., 2021. In review (submitted 23.11.2020).</p>


2005 ◽  
Vol 62 (10) ◽  
pp. 3758-3774 ◽  
Author(s):  
Daniel J. Kirshbaum ◽  
Dale R. Durran

Abstract The three-dimensional structure of shallow orographic convection is investigated through simulations performed with a cloud-resolving numerical model. In moist flows that overcome a given topographic barrier to form statically unstable cap clouds, the organization of the convection depends on both the atmospheric structure and the mechanism by which the convection is initiated. Convection initiated by background thermal fluctuations embedded in the flow over a smooth mountain (without any small-scale topographic features) tends to be cellular and disorganized except that shear-parallel bands may form in flows with strong unidirectional vertical shear. The development of well-organized bands is favored when there is weak static instability inside the cloud and when the dry air surrounding the cloud is strongly stable. These bands move with the flow and distribute their cumulative precipitation evenly over the mountain upslope. Similar shear-parallel bands also develop in flows where convection is initiated by small-scale topographic noise superimposed onto the main mountain profile, but in this case stronger circulations are also triggered that create stationary rainbands parallel to the low-level flow. This second dominant mode, which is less sensitive to the atmospheric structure and the strength of forcing, is triggered by lee waves that form over small-scale topographic bumps near the upstream edge of the main orographic cloud. Due to their stationarity, these flow-parallel bands can produce locally heavy precipitation amounts.


2005 ◽  
Vol 62 (5) ◽  
pp. 1480-1496 ◽  
Author(s):  
Zachary A. Eitzen ◽  
David A. Randall

Abstract This study uses a numerical model to simulate deep convection both in the Tropics over the ocean and the midlatitudes over land. The vertical grid that was used extends into the stratosphere, allowing for the simultaneous examination of the convection and the vertically propagating gravity waves that it generates. A large number of trajectories are used to evaluate the behavior of tracers in the troposphere, and it is found that the tracers can be segregated into different types based upon their position in a diagram of normalized vertical velocity versus displacement. Conditional sampling is also used to identify updrafts in the troposphere and calculate their contribution to the kinetic energy budget of the troposphere. In addition, Fourier analysis is used to characterize the waves in the stratosphere; it was found that the waves simulated in this study have similarities to those observed and simulated by other researchers. Finally, this study examines the wave energy flux as a means to provide a link between the tropospheric behavior of the convection and the strength of the waves in the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document