scholarly journals ENTRAINMENT IN A SIMULATED SUPERCELL THUNDERSTORM, PART I: THE EVOLUTION OF DIFFERENT ENTRAINMENT MECHANISMS AND THEIR DILUTIVE EFFECTS

Author(s):  
Sonia Lasher-Trapp ◽  
Enoch Jo ◽  
Luke R. Allen ◽  
Bryan N. Engelsen ◽  
Robert J. Trapp

AbstractThe current study identifies and quantifies various mechanisms of entrainment, and their diluting effects, in the developing and mature stages of a simulated supercell thunderstorm. The two stages, differentiated by the lack or presence of a rotating updraft, are shown to entrain air by different, but related mechanisms that result from the strong vertical wind shear of the environment. The greatest entrainment rates in the developing stage result from the asymmetric overturning of large eddies near cloud top on the down-shear side. These rates are greater than those published in the literature for cumuli developing in environments lacking strong shear. Although the entrainment rate increases exponentially in time throughout the developing stage, successive cloud turrets help to replenish some of the lost buoyancy and condensate, allowing the nascent storm to develop further. During the mature stage, the greatest entrainment rates occur via “ribbons” of horizontal vorticity wrapping around the rotating updraft that ascend in time. The smaller width of the ribbons in comparison to the wider storm core limits their dilutive effects. Passive tracers placed in the low-level air ingested by the mature storm indicate that on average 20% of the core contains some undiluted air ingested from below the storm base, unaffected by any entrainment mechanism.

2020 ◽  
Author(s):  
Patrick Johannes Stoll ◽  
Thomas Spengler ◽  
Annick Terpstra ◽  
Rune Grand Graversen

Abstract. Polar lows are intense mesoscale cyclones that develop in polar marine air masses. Motivated by the large variety in their proposed intensification mechanisms, cloud structure, and ambient sub-synoptic environment, we use self-organising maps to classify polar lows. The method is applied to 370 polar lows in the North-East Atlantic, which were obtained by matching mesoscale cyclones from the ERA-5 reanalysis to polar lows registered by the Norwegian Meteorological Institute in the STARS dataset. ERA-5 reproduces 93 % of the STARS polar lows. We identify five different polar-low configurations, which are characterised by the vertical wind shear vector relative to the propagation direction. Four categories feature a strong shear with different orientations of the shear vector, whereas the fifth category contains conditions with weak shear. The orientation of the vertical-shear vector for the strong shear categories determines the dynamics of the systems, confirming the relevance of the previously identified categorisation into forward and reverse-shear polar lows. In addition, we expand the categorisation with right and left-shear polar lows that propagate towards colder and warmer environments, respectively. Polar lows in the four strong shear categories feature an up-shear tilt in the vertical, typical for the intensification through moist baroclinic processes. As weak-shear conditions mainly occur at the mature or lysis stage of polar lows, we find no evidence for hurricane-like development and propose that spirali-form PLs are most likely associated with a warm seclusion process.


2014 ◽  
Vol 142 (9) ◽  
pp. 3372-3392 ◽  
Author(s):  
Annette M. Foerster ◽  
Michael M. Bell ◽  
Patrick A. Harr ◽  
Sarah C. Jones

A unique dataset observing the life cycle of Typhoon Sinlaku was collected during The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) in 2008. In this study observations of the transformation stage of the extratropical transition of Sinlaku are analyzed. Research flights with the Naval Research Laboratory P-3 and the U.S. Air Force WC-130 aircraft were conducted in the core region of Sinlaku. Data from the Electra Doppler Radar (ELDORA), dropsondes, aircraft flight level, and satellite atmospheric motion vectors were analyzed with the recently developed Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) software with a 1-km horizontal- and 0.5-km vertical-node spacing. The SAMURAI analysis shows marked asymmetries in the structure of the core region in the radar reflectivity and three-dimensional wind field. The highest radar reflectivities were found in the left of shear semicircle, and maximum ascent was found in the downshear left quadrant. Initial radar echos were found slightly upstream of the downshear direction and downdrafts were primarily located in the upshear semicircle, suggesting that individual cells in Sinlaku’s eyewall formed in the downshear region, matured as they traveled downstream, and decayed in the upshear region. The observed structure is consistent with previous studies of tropical cyclones in vertical wind shear, suggesting that the eyewall convection is primarily shaped by increased vertical wind shear during step 2 of the transformation stage, as was hypothesized by Klein et al. A transition from active convection upwind to stratiform precipitation downwind is similar to that found in the principal rainband of more intense tropical cyclones.


2020 ◽  
Vol 148 (8) ◽  
pp. 3225-3241
Author(s):  
Robert J. Trapp ◽  
Karen A. Kosiba ◽  
James N. Marquis ◽  
Matthew R. Kumjian ◽  
Stephen W. Nesbitt ◽  
...  

Abstract On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain.


2021 ◽  
Author(s):  
Patrick Stoll ◽  
Thomas Spengler ◽  
Rune Grand Graversen

<p>Polar lows are intense mesoscale cyclones that develop in polar marine air masses. Motivated by the large variety of their proposed intensification mechanisms, cloud structure, and ambient sub-synoptic environment, we use self-organising maps to classify polar lows. </p><p>We identify five different polar-low configurations which are characterised by the vertical wind shear vector, the change of the horizontal-wind vector with height, relative to the propagation direction. Four categories feature a strong shear with different orientations of the shear vector, whereas the fifth category contains conditions with weak shear. This confirms the relevance of a previously identified categorisation into forward and reverse-shear polar lows. We expand the categorisation with right and left-shear polar lows that propagate towards colder and warmer environments, respectively.</p><p>For the strong-shear categories, the shear vector organises the moist-baroclinic dynamics of the systems. This is apparent in the low-pressure anomaly tilting with height against the shear vector, and the main updrafts occurring along the warm front located in the forward-left direction relative to the shear vector. These main updrafts contribute to the intensification through latent-heat release and are typically associated with comma-shaped clouds.</p><p>Polar low situations with a weak shear, that often feature spirali-form clouds, occur mainly at decaying stages of the development. We thus find no evidence for hurricane-like intensification of polar lows and propose instead that spirali-form clouds are associated with a warm seclusion process.</p>


2021 ◽  
Vol 2 (1) ◽  
pp. 19-36
Author(s):  
Patrick Johannes Stoll ◽  
Thomas Spengler ◽  
Annick Terpstra ◽  
Rune Grand Graversen

Abstract. Polar lows are intense mesoscale cyclones that develop in polar marine air masses. Motivated by the large variety of their proposed intensification mechanisms, cloud structure, and ambient sub-synoptic environment, we use self-organising maps to classify polar lows. The method is applied to 370 polar lows in the north-eastern Atlantic, which were obtained by matching mesoscale cyclones from the ERA-5 reanalysis to polar lows registered in the STARS dataset by the Norwegian Meteorological Institute. ERA-5 reproduces most of the STARS polar lows. We identify five different polar-low configurations which are characterised by the vertical wind shear vector, the change in the horizontal-wind vector with height, relative to the propagation direction. Four categories feature a strong shear with different orientations of the shear vector, whereas the fifth category contains conditions with weak shear. This confirms the relevance of a previously identified categorisation into forward- and reverse-shear polar lows. We expand the categorisation with right- and left-shear polar lows that propagate towards colder and warmer environments, respectively. For the strong-shear categories, the shear vector organises the moist-baroclinic dynamics of the systems. This is apparent in the low-pressure anomaly tilting with height against the shear vector and the main updrafts occurring along the warm front located in the forward-left direction relative to the shear vector. These main updrafts contribute to the intensification through latent heat release and are typically associated with comma-shaped clouds. Polar-low situations with a weak shear, which often feature spirali-form clouds, occur mainly at decaying stages of the development. We thus find no evidence for hurricane-like intensification of polar lows and propose instead that spirali-form clouds are associated with a warm seclusion process.


2021 ◽  
Vol 78 (4) ◽  
pp. 1275-1293
Author(s):  
Yi Dai ◽  
Sharanya J. Majumdar ◽  
David S. Nolan

AbstractIt is widely known that strong vertical wind shear (exceeding 10 m s−1) often weakens tropical cyclones (TCs). However, in some circumstances, a TC is able to resist this strong shear and even restrengthen. To better understand this phenomenon, a series of idealized simulations are conducted, followed by a statistical investigation of 40 years of Northern Hemisphere TCs. In the idealized simulations, a TC is embedded within a time-varying point-downscaling framework, which is used to gradually increase the environmental vertical wind shear to 14 m s−1 and then hold it constant. This controlled framework also allows for the separation of the TC-induced flow from the prescribed environmental flow. The TC-induced outflow is found to withstand the strong upper-tropospheric environmental flow, and this is manifested in the TC-induced shear difference (TCSD) vector. The TCSD vector, together with the environmental shear vector, defines an azimuthal range within which most of the asymmetric convection is located. The statistical analysis confirms the findings from the idealized simulations, and the results are not strongly sensitive to the TC intensity or basin. Moreover, compared with total shear, the inclusion of TCSD information creates a slightly better correlation with TC intensity change. Overall, the TCSD vector serves as a diagnostic to explain the ability of a TC to resist strong environmental shear through its outflow, and it could potentially be used as a parameter to predict future intensity change.


2021 ◽  
Author(s):  
Sonja Drueke ◽  
Daniel J. Kirshbaum ◽  
Pavlos Kollias

Abstract. This second part of a numerical study on shallow-cumulus dilution focuses on the sensitivity of cloud dilution to changes in the vertical wind profile. Insights are obtained through large-eddy simulations of maritime and continental cloud fields. In these simulations, the speed of the initially uniform geostrophic wind, and the strength of geostrophic vertical wind shear in the cloud and subcloud layer are varied. Increases in the cloud-layer vertical wind shear (up to 9 m/s/km) lead to 40–50 % larger cloud-core dilution rates compared to their respective unsheared counterparts. When the background wind speed, on the other hand, is enhanced by up to 10 m/s and subcloud-layer vertical wind shear develops or is initially prescribed, the dilution rate decreases by up to 25 %. The sensitivities of the dilution rate are linked to the updraft strength and the properties of the entrained air. Increases in the wind speed or vertical wind shear result in lower vertical velocities across all sets of experiments with stronger reductions in the cloud-layer wind shear simulation (27–47 %). Weaker updrafts are exposed to mixing with the drier surrounding air for a longer time period, allowing more entrainment to occur (i.e., the "core exposure effect"). However, reduced vertical velocities, in concert with increased cloud-layer turbulence, also assist in widening the humid shell surrounding the cloud cores, leading to entrainment of more humid air (i.e., the "core-shell dilution effect"). In the experiments with cloud-layer vertical wind shear, the core exposure effect dominates and the cloud-core dilution increases with increasing shear. Conversely, when the wind speed is increased and subcloud-layer vertical wind shear develops or is imposed, the core-shell dilution effect dominates to induce a purifying effect. The sensitivities are generally stronger in the maritime simulations, where weaker sensible heat fluxes lead to narrower, more tilted, and, therefore, more suppressed cumuli when cloud-layer shear is imposed. Moreover, in the experiments with subcloud wind shear, the weaker baseline turbulence in the maritime case allows for a larger turbulence enhancement, resulting in a widening of the transition zones between the cores and their environment, leading to the entrainment of more humid air.


2021 ◽  
Vol 21 (18) ◽  
pp. 14039-14058
Author(s):  
Sonja Drueke ◽  
Daniel J. Kirshbaum ◽  
Pavlos Kollias

Abstract. This second part of a numerical study on shallow-cumulus dilution focuses on the sensitivity of cloud dilution to changes in the vertical wind profile. Insights are obtained through large-eddy simulations of maritime and continental cloud fields. In these simulations, the speed of the initially uniform geostrophic wind and the strength of geostrophic vertical wind shear in the cloud and subcloud layer are varied. Increases in the cloud-layer vertical wind shear (up to 9 ms-1km-1) lead to 40 %–50 % larger cloud-core dilution rates compared to their respective unsheared counterparts. When the background wind speed, on the other hand, is enhanced by up to 10 m s−1 and subcloud-layer vertical wind shear develops or is initially prescribed, the dilution rate decreases by up to 25 %. The sensitivities of the dilution rate are linked to the updraft strength and the properties of the entrained air. Increases in the wind speed or vertical wind shear result in lower vertical velocities across all sets of experiments with stronger reductions in the cloud-layer wind shear simulation (27 %–47 %). Weaker updrafts are exposed to mixing with the drier surrounding air for a longer time period, allowing more entrainment to occur (i.e., the “core-exposure effect”). However, reduced vertical velocities, in concert with increased cloud-layer turbulence, also assist in widening the humid shell surrounding the cloud cores, leading to entrainment of more humid air (i.e., the “core–shell dilution effect”). In the experiments with cloud-layer vertical wind shear, the core-exposure effect dominates and the cloud-core dilution increases with increasing shear. Conversely, when the wind speed is increased and subcloud-layer vertical wind shear develops or is imposed, the core–shell dilution effect dominates to induce a buffering effect. The sensitivities are generally stronger in the maritime simulations, where weaker sensible heat fluxes lead to narrower, more tilted, and, therefore, more suppressed cumuli when cloud-layer shear is imposed. Moreover, in the experiments with subcloud wind shear, the weaker baseline turbulence in the maritime case allows for a larger turbulence enhancement, resulting in a widening of the transition zones between the cores and their environment, leading to the entrainment of more humid air.


2004 ◽  
Vol 61 (21) ◽  
pp. 2493-2509 ◽  
Author(s):  
John Molinari ◽  
David Vollaro ◽  
Kristen L. Corbosiero

Abstract The development of Hurricane Danny (1997) from depression to hurricane was examined using cloud-to-ground lightning data, reconnaissance aircraft data, and satellite imagery. Vertical wind shear between 850 and 200 hPa of 5–11 m s−1 produced persistent downshear convective outbreaks that became progressively more intense and closer to the center during the development. Early in the period the storm intensified steadily in the presence of this downshear convection. During the last and most intense outbreak, a second vortex appeared to develop within the convection. Evidence is presented that the new downshear vortex became the dominant vortex and absorbed the original. Based on these events, it is hypothesized that the presence of moderate vertical wind shear accelerated the early development process. Equivalent potential temperature fields within 500 m of the surface were examined. Only well after the period of vortex interaction did the characteristic mature tropical cyclone radial profile of equivalent potential temperature appear. This came about by the virtual elimination of both low θe values in the core and high θe values outside the core that had been present at previous hours. The growth of Hurricane Danny is viewed in terms of the wind-induced surface heat exchange (WISHE) theory. During the tropical depression and early tropical storm (“pre-WISHE”) periods, few if any of the assumptions of WISHE were met: vertical wind shear exceeded 5 m s−1, considerable azimuthal asymmetry was present, transient highly buoyant convection occurred, and low values of θe in the storm core suggested the presence of convective downdrafts. It is proposed that 1) vortex interactions and subsequent axisymmetrization produced a single dominant vortex at the surface, and 2) vertical mixing of moist entropy by strong convection moved the sounding toward moist neutrality. By this reasoning, the disturbance then met the key tenets of the known finite-amplitude WISHE instability, and the storm intensified to hurricane strength.


Author(s):  
Fitriah Khoirunnisa ◽  
Friska Septiani Silitonga ◽  
Veri Firmansyah

Penelitian ini bertujuan menganalisis kebutuhan petunjuk praktikum berbasis Keterampilan Proses Sains (KPS) untuk mencapai kemampuan merancang eksperimen pada materi kalor reaksi kalorimetri. Penelitian dilakukan terhadap peserta didik kelas XI SMA Negeri 2 Kota Tanjungpinang. Variabel penelitian mencakup analisis kebutuhan bahan ajar dan analisis kesesuaian Kompetensi Inti (KI) dan Kompetensi Dasar (KD). Jenis penelitian yang dilakukan adalah penelitian deskriptif kualitatif. Tahapan pertama dalam penelitian ini adalah menganalisis kebutuhan bahan ajar dengan cara membandingkan dua petunjuk praktikum yang selama ini telah digunakan di sekolah tersebut, ditinjau dari aspek struktur format penulisan, aspek kreativitas, dan aspek keterampilan proses sains yang terdapat dalam petunjuk praktikum. Sehingga didapatkan kesimpulan bahwa petunjuk praktikum yang selama ini digunakan tidak memberikan kesempatan kepada peserta didiknya untuk merancang eksperimen yang telah ditentukan. Tahapan kedua yaitu menganalisis kesesuaian kompetensi inti dan kompetensi dasar, yang bertujuan untuk menentukan indikator pencapaian kompetensi (IPK) yang akan menjadi acuan dalam mengembangkan petunjuk praktikum berbasis keterampilan proses sains. Dari kedua tahapan yang telah dilakukan maka dapat disimpulkan bahwa peserta didik memerlukan petunjuk praktikum yang mampu mengonstruksi pikiran dan mengaktifkan kinerja mereka, sehingga pendekatan Keterampilan Proses Sains menjadi pilihan dalam mengembangkan petunjuk praktikum yang sesuai dengan karakteristik kurikulum 2013.   This research aims to analyze the needs of Science Process Skills based Practical Instruction to achieve the ability to design experiments on the calor of reaction. This research was done to the students of class XI SMA Negeri 2 Tanjungpinang City. Research Variable includes the analysis of the needs of the learning materials and analysis of the suitability of the Core Competence (KI) and Basic Competence (KD). The type of research conducted is descriptive qualitative research. The first stages in this research is to analyze the needs of learning materials by comparing two practical instructions that had been implementing in the school, from the aspects of the structure of writing format, creativity, and science process skills embedded in practical instructions. The conclusion of this research that current practical instructions does not give an opportunity to the participants to design determined experiments. The second stage, namely analyzing the suitability of core competence and basic competence, which aims to determine the indicators of achievement of the competencies (GPA) which will be a reference in developing process skills-based teaching instructions science. Of the two stages that has been done then it can be concluded that learners need practical instructions to construct  thinking and and their performance, so the Science Process Skills approach is an option in developing practical instruction suitable for the characteristics of the curriculum of 2013.


Sign in / Sign up

Export Citation Format

Share Document