scholarly journals On the Longwave Climate Feedbacks

2013 ◽  
Vol 26 (19) ◽  
pp. 7603-7610 ◽  
Author(s):  
Yi Huang

Abstract This paper mainly addresses two issues that concern the longwave climate feedbacks. First, it is recognized that the radiative forcing of greenhouse gases, as measured by their impact on the outgoing longwave radiation (OLR), may vary across different climate models even when the concentrations of these gases are identically prescribed. This forcing variation contributes to the discrepancy in these models' projections of surface warming. A method is proposed to account for this effect in diagnosing the sensitivity and feedbacks in the models. Second, it is shown that the stratosphere is an important factor that affects the OLR in transient climate change. Stratospheric water vapor and temperature changes may both act as a positive feedback mechanism during global warming and cannot be fully accounted as a “stratospheric adjustment” of radiative forcing. Neglecting these two issues may cause a bias in the longwave cloud feedback diagnosed as a residual term in the decomposition of OLR variations. There is no consensus among the climate models on the sign of the longwave cloud feedback after accounting for both issues.

2020 ◽  
Vol 101 (12) ◽  
pp. E2030-E2046 ◽  
Author(s):  
L. Palchetti ◽  
H. Brindley ◽  
R. Bantges ◽  
S. A. Buehler ◽  
C. Camy-Peyret ◽  
...  

AbstractThe outgoing longwave radiation (OLR) emitted to space is a fundamental component of the Earth’s energy budget. There are numerous, entangled physical processes that contribute to OLR and that are responsible for driving, and responding to, climate change. Spectrally resolved observations can disentangle these processes, but technical limitations have precluded accurate space-based spectral measurements covering the far infrared (FIR) from 100 to 667 cm−1 (wavelengths between 15 and 100 µm). The Earth’s FIR spectrum is thus essentially unmeasured even though at least half of the OLR arises from this spectral range. The region is strongly influenced by upper-tropospheric–lower-stratospheric water vapor, temperature lapse rate, ice cloud distribution, and microphysics, all critical parameters in the climate system that are highly variable and still poorly observed and understood. To cover this uncharted territory in Earth observations, the Far-Infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission has recently been selected as ESA’s ninth Earth Explorer mission for launch in 2026. The primary goal of FORUM is to measure, with high absolute accuracy, the FIR component of the spectrally resolved OLR for the first time with high spectral resolution and radiometric accuracy. The mission will provide a benchmark dataset of global observations which will significantly enhance our understanding of key forcing and feedback processes of the Earth’s atmosphere to enable more stringent evaluation of climate models. This paper describes the motivation for the mission, highlighting the scientific advances that are expected from the new measurements.


2013 ◽  
Vol 13 (8) ◽  
pp. 4057-4072 ◽  
Author(s):  
K. W. Bowman ◽  
D. T. Shindell ◽  
H. M. Worden ◽  
J.F. Lamarque ◽  
P. J. Young ◽  
...  

Abstract. We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5–20 ppb) in the Southern Hemisphere (SH) and modest high bias (5–10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005–2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120 mW m−2 OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39 ± 41 m Wm−2 relative to TES data. We show that there is a correlation (R2 = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750–2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100 m Wm−2. Removing these models leads to a mean ozone radiative forcing of 394 ± 42 m Wm−2. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 ± 60 m Wm−2 derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.


2013 ◽  
Vol 26 (13) ◽  
pp. 4518-4534 ◽  
Author(s):  
Kyle C. Armour ◽  
Cecilia M. Bitz ◽  
Gerard H. Roe

Abstract The sensitivity of global climate with respect to forcing is generally described in terms of the global climate feedback—the global radiative response per degree of global annual mean surface temperature change. While the global climate feedback is often assumed to be constant, its value—diagnosed from global climate models—shows substantial time variation under transient warming. Here a reformulation of the global climate feedback in terms of its contributions from regional climate feedbacks is proposed, providing a clear physical insight into this behavior. Using (i) a state-of-the-art global climate model and (ii) a low-order energy balance model, it is shown that the global climate feedback is fundamentally linked to the geographic pattern of regional climate feedbacks and the geographic pattern of surface warming at any given time. Time variation of the global climate feedback arises naturally when the pattern of surface warming evolves, actuating feedbacks of different strengths in different regions. This result has substantial implications for the ability to constrain future climate changes from observations of past and present climate states. The regional climate feedbacks formulation also reveals fundamental biases in a widely used method for diagnosing climate sensitivity, feedbacks, and radiative forcing—the regression of the global top-of-atmosphere radiation flux on global surface temperature. Further, it suggests a clear mechanism for the “efficacies” of both ocean heat uptake and radiative forcing.


2012 ◽  
Vol 8 (4) ◽  
pp. 2645-2693 ◽  
Author(s):  
A. Goldner ◽  
M. Huber ◽  
R. Caballero

Abstract. In this study we compare the simulated climatic impact of adding the Antarctic Ice Sheet to the "Greenhouse World" of the Eocene and removing the Antarctic Ice Sheet from the Modern world. The Modern surface temperature anomaly (ΔT) induced by Antarctic Glaciation ranges from −1.22 to −0.18 K when CO2 is dropped from 2240 to 560 ppm, whereas the Eocene ΔT is nearly constant at −0.3 K. We calculate the climate sensitivity parameter S[Antarctica] which is defined as the change in surface temperature (ΔT) divided by the change in radiative forcing (ΔQAntarctica) imposed by prescribing the glacial properties of Antarctica. While the ΔT associated with the imposed Antarctic properties is relatively consistent across the Eocene cases, the radiative forcing is not. This leads to a wide range of S[Antarctica], with Eocene values systematically smaller than Modern. This differing temperature response in Eocene and Modern is partially due to the smaller surface area of the imposed forcing over Antarctica in the Eocene and partially due to the presence of strong positive sea-ice feedbacks in the Modern. The system's response is further mediated by differing shortwave cloud feedbacks which are large and of opposite sign operating in Modern and Eocene configurations. A negative cloud feedback warms much of the Earth's surface as a large ice sheet is introduced in Antarctica in the Eocene, whereas in the Modern this cloud feedback is positive and acts to enhance cooling introduced by adding an ice sheet. Because of the importance of cloud feedbacks in determining the final temperature sensitivity of the Antarctic Ice Sheet our results are likely to be model dependent. Nevertheless, these model results show that the radiative forcing and feedbacks induced by the Antarctic Ice Sheet did not significantly decrease global mean surface temperature across the Eocene-Oligocene transition (EOT) and that other factors like declining atmospheric CO2 are more important for cooling across the EOT. The results indicate that climate transitions associated with glaciation depend on the climate background state. This means that using paleoclimate proxy data by itself, from the EOT to estimate Earth System Sensitivity, into the future, is made difficult without relying on climate models and consequently these modelling estimates will have large uncertainty, largely due to low clouds.


2012 ◽  
Vol 25 (11) ◽  
pp. 3715-3735 ◽  
Author(s):  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Dennis L. Hartmann

This study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (τ). These histograms were generated by the International Satellite Cloud Climatology Project (ISCCP) simulator that was incorporated into doubled-CO2 simulations from 11 global climate models in the Cloud Feedback Model Intercomparison Project. The authors use a radiative transfer model to compute top of atmosphere flux sensitivities to cloud fraction perturbations in each bin of the histogram for each month and latitude. Multiplying these cloud radiative kernels with histograms of modeled cloud fraction changes at each grid point per unit of global warming produces an estimate of cloud feedback. Spatial structures and globally integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions from medium thickness (3.6 < τ ≤ 23) cloud changes, but thick (τ > 23) cloud changes cause the rapid transition of cloud feedback values from positive in midlatitudes to negative poleward of 50°S and 70°N. High (CTP ≤ 440 hPa) cloud changes are the dominant contributor to longwave (LW) cloud feedback, but because their LW and shortwave (SW) impacts are in opposition, they contribute less to the net cloud feedback than do the positive contributions from low (CTP > 680 hPa) cloud changes. Midlevel (440 < CTP ≤ 680 hPa) cloud changes cause positive SW cloud feedbacks that are 80% as large as those due to low clouds. Finally, high cloud changes induce wider ranges of LW and SW cloud feedbacks across models than do low clouds.


2013 ◽  
Vol 26 (17) ◽  
pp. 6561-6574 ◽  
Author(s):  
Daniel R. Feldman ◽  
Daniel M. Coleman ◽  
William D. Collins

Abstract Top-of-atmosphere radiometric signals associated with different high- and low-cloud–radiative feedbacks have been examined through the use of an observing system simulation experiment (OSSE). The OSSE simulates variations in the spectrally resolved and spectrally integrated signals that are due to a range of plausible feedbacks of the climate system when forced with CO2 concentrations that increase at 1% yr−1. This initial version of the OSSE is based on the Community Climate System Model, version 3 (CCSM3), and exploits the fact that CCSM3 exhibits different cloud feedback strengths for different model horizontal resolutions. In addition to the conventional broadband shortwave albedos and outgoing longwave fluxes, a dataset of shortwave spectral reflectance and longwave spectral radiance has been created. These data have been analyzed to determine simulated satellite instrument signals of poorly constrained cloud feedbacks for three plausible realizations of Earth's climate system produced by CCSM3. These data have been analyzed to estimate the observational record length of albedo, outgoing longwave radiation, shortwave reflectance, or longwave radiance required to differentiate these dissimilar Earth system realizations. Shortwave spectral measurements in visible and near-infrared water vapor overtone lines are best suited to differentiate model results, and a 33% difference in shortwave–cloud feedbacks can be detected with 20 years of continuous measurements. Nevertheless, at most latitudes and with most wavelengths, the difference detection time is more than 30 years. This suggests that observing systems of sufficiently stable calibration would be useful in addressing the contribution of low clouds to the spread of climate sensitivities currently exhibited by the models that report to the Intergovernmental Panel on Climate Change (IPCC).


2015 ◽  
Vol 28 (4) ◽  
pp. 1630-1648 ◽  
Author(s):  
Timothy Andrews ◽  
Jonathan M. Gregory ◽  
Mark J. Webb

Abstract Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of the Coupled Model Intercomparison Project (CMIP5) atmosphere–ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined, the climate feedback parameter becomes significantly (95% confidence) less negative (i.e., the effective climate sensitivity increases) as time passes. Cloud feedback parameters show the largest changes. In the AOGCM mean, approximately 60% of the change in feedback parameter comes from the tropics (30°N–30°S). An important region involved is the tropical Pacific, where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea surface temperatures and sea ice prescribed from its AOGCM counterpart, each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. It is also demonstrated that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but nonzero change in net radiation at the top of the atmosphere (~−0.5 W m−2 in HadCM3).


2019 ◽  
Author(s):  
Le Kuai ◽  
Kevin W. Bowman ◽  
Helen Worden ◽  
Kazuyuki Miyazaki ◽  
Susan Kulawik ◽  
...  

Abstract. The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6-μm ozone band is a fundamental quantity for understanding chemistry-climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit considerable variability in space and time that depend on the distributions of clouds, ozone (O3), water vapor (H2O), air temperature (Ta), and surface temperature (Ts). Benchmarking present day fluxes and quantifying the relative influence of their drivers is the first step for estimating climate feedbacks from ozone radiative forcing and predicting its evolution. To that end, we construct observational instantaneous radiative kernels (IRKs) representing the sensitivities of the TOA flux in the 9.6-μm ozone band to the vertical distribution of geophysical variables, including O3, H2O, Ta, and Ts based upon the Aura Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels to present-day simulations from the Chemistry-Climate Model Initiative (CCMI) project as compared to a 2006 reanalysis assimilating satellite observations, we show that the models have large differences in TOA flux, attributable to different geophysical variables. In particular, model simulations continue to diverge from observations in the tropics, as reported in previous studies of the Atmospheric Chemistry Climate Model Inter-comparison Project (ACCMIP) simulations. The principal culprits are tropical mid and upper tropospheric ozone followed by tropical lower tropospheric H2O. Five models out of the eight studied here have TOA flux biases exceeding 100 mWm−2 attributable to tropospheric ozone bias. Another set of five models flux biases over 50 mWm−2 due to H2O. On the other hand, Ta radiative bias is negligible in all models (no more than 30 mWm−2). We found that AM3 and CMAM have the lowest TOA flux biases globally but are a result of cancellation of difference processes. Overall, the multi-model ensemble mean bias is −132.9 ± 98 mWm−2, indicating that they are too atmospherically opaque thereby reducing sensitivity of TOA flux to ozone and potentially an underestimate of ozone radiative forcing. We find that the inter-model TOA OLR difference is well anti-correlated with their ozone band flux bias. This suggests that there is significant radiative compensation in the calculation of model outgoing longwave radiation.


2012 ◽  
Vol 12 (9) ◽  
pp. 23603-23644 ◽  
Author(s):  
K. Bowman ◽  
D. Shindell ◽  
H. Worden ◽  
J. F. Lamarque ◽  
P. J. Young ◽  
...  

Abstract. We use simultaneous observations of ozone and outgoing longwave radiation (OLR) from the Tropospheric Emission Spectrometer (TES) to evaluate ozone distributions and radiative forcing simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5–20 ppb) in the Southern Hemisphere (SH) and modest high bias (5–10 ppb) in the Northern Hemisphere (NH) relative to TES for 2005–2010. These biases lead to substantial differences in ozone instantaneous radiative forcing between TES and the ACCMIP simulations. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean has a low bias in the SH tropics of up to 100 m W m−2 locally and a global low bias of 35 ± 44 m W m−2 relative to TES. Combining ACCMIP preindustrial ozone and the TES present-day ozone, we calculate an observationally constrained estimate of tropospheric ozone radiative forcing (RF) of 399 ± 70 m W m−2, which is about 7% higher than using the ACCMIP models alone but with the same standard deviation (Stevenson et al., 2012). In addition, we explore an alternate approach to constraining radiative forcing estimates by choosing a subset of models that best match TES ozone, which leads to an ozone RF of 369 ± 42 m W m−2. This estimate is closer to the ACCMIP ensemble mean RF but about a 40% reduction in standard deviation. These results point towards a profitable direction of combining observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.


2021 ◽  
Author(s):  
Giuseppe Zappa ◽  
Paulo Ceppi ◽  
Theodore Shepherd

&lt;p&gt;Regions with a Mediterranean-like climate, apart for California, are projected to receive less rainfall due to climate change, thus posing serious implications for future water availability for societal and agricultural needs. At a first order, it is often assumed that water availability is proportional to global mean warming. Yet, the mechanisms controlling the precipitation response in Mediterranean climates remain only partly understood, as shown by the substantial uncertainty that still characterises the climate model projections. Here, by analysing projections from the CMIP5 climate models, we show that the linear scaling with warming does not apply in three key Mediterranean-like regions, namely Chile, California and the Mediterranean proper. In particular, despite long-term warming, the models show that the projected precipitation reduction in Chile and the Mediterranean halts as soon as anthropogenic forcing is stabilised, while the precipitation increase in California accelerates. By examining the response to an abrupt quadrupling of CO2, we demonstrate that such non-linearity in the time-evolution of precipitation cannot be solely explained by the well-known rapid adjustment to radiative forcing, but it is instead due to distinct fast and slow patterns of atmospheric circulation change, that are themselves forced by the time-evolution in the spatial patterns of sea-surface temperature warming. In particular, while the fast warming is favourable to force a poleward shift of the mid-latitudes jets, hence drying the Mediterranean and Chile, the slow warming, including an el nino-like pattern in the tropical Pacific, inhibits such shifts and precipitation changes, while favouring the wetting of California. The results show that stabilising GHG concentrations will have an immediate benefit to the hydro-climate of these Mediterranean-like regions, while pointing to constraining uncertainty in the patterns of surface warming as an important step to increase confidence in the future projections.&lt;span&gt;&amp;#160;&lt;/span&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document